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1 Hilbert Space Review

1.1 Inner products

In functional analysis, we need to use a field with a topological structure. In this course,
we will use the fields F ∈ {R,C}.

Definition 1.1. Let H be a vector space over F. A semi-inner product 〈·, ·〉 : H×H → F
is a function such that

1. 〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉

2. 〈x, y〉 = 〈y, x〉

3. 〈x, x〉 ≥ 0.

This is an inner product if 〈x, x〉 = 0 =⇒ x = 0.1

Example 1.1. Fn has the inner product 〈x, y〉 =
∑n

i=1 xiyi.

Example 1.2. F∞ = {(xi)∞i=1 ∈ FN : xi = 0 for all sufficiently large i} has the inner
product 〈x, y〉 =

∑∞
i=1 xiyi.

Example 1.3. L2
F(µ) = {f : X → F : f measurable,

∫
|f |2 dµ <∞} has the inner product

〈f, g〉 =
∫
fg dµ.

1.2 Norm and metric structure

Theorem 1.1 (Cauchy-Bunyakowski-Schwarz inequality). Any semi-inner product satis-
fies

| 〈x, y〉 | ≤
√
〈x, x〉

√
〈y, y〉.

Corollary 1.1. If we set ‖x‖ :=
√
〈x, x〉, then

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

• ‖λx‖ = |λ| · ‖x‖ ∀λ ∈ F, x ∈ H.

Definition 1.2. ‖ · ‖ is called the (semi-) norm associated to the (semi-) inner product.

Proposition 1.1 (Polar identity).

‖x+ y‖2 = ‖x‖2 + 2 Re(〈x, y〉) + ‖y‖2

Remark 1.1. We get the imaginary part, too, because

Re 〈−ix, y〉 = Re(−i 〈x, y〉) = Im 〈x, y〉 .
1This is sometimes referred to as the inequality being “coercive.”
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Definition 1.3. The associated metric to an inner product is d(x, y) := ‖x− y‖.

Definition 1.4. A Hilbert space is an inner product space which is complete with respect
to this metric.

Example 1.4. Fn is a Hilbert space.

Example 1.5. F∞ is not complete, so it is not a Hilbert space.

Example 1.6. L2(µ) is a Hilbert space.

Proposition 1.2. If (H, 〈·, ·〉) is an inner product space, then there is a Hilbert space
(H ′, 〈·, ·〉′) such that

• H ⊆ H ′, and H is dense,

• 〈·, ·〉′ |H×H = 〈·, ·〉.

The space H ′ is called the completion of H.

Example 1.7. The completion of F∞ is `2 = {(xi)∞i=1 ∈ FN :
∑∞

i=1 |xi|2 < ∞} with the
inner product 〈x, y〉 =

∑∞
i=1 xiyi. This is also L2(m), where m is counting measure on N.

Example 1.8. Let G ⊆ C be open. Then the Bergman space L2
a(G), the set of L2

functions that are analytic in G, is a Hilbert space.

1.3 Orthogonality

Definition 1.5. Elements x, y ∈ H are orthogonal (denoted x ⊥ y) if 〈x, y〉 = 0. If
A,B ⊆ H, we say A ⊥ B if x ⊥ y for all (x, y) ∈ A×B.

Theorem 1.2 (Pythagorean identity). Let H be a semi-inner product space, and let xn ∈
H be such that xi ⊥ xj for all i 6= j. Then

‖x1 + · · ·+ xn‖2 = ‖x1‖2 + · · ·+ ‖xn‖2.

Corollary 1.2 (Parallelogram law). For any x, y ∈ H,

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Definition 1.6. A ⊆ H is convex if whenever x, y ∈ A, tx+ (1− t)y ∈ A for all t ∈ [0, 1].

Proposition 1.3. Let H be a Hilbert space, let h ∈ H, and let K ⊆ H be nonempty,
closed, and convex. Then there is a unique k ∈ K such that ‖h − k‖ ≤ ‖h − k′‖ for all
k′ ∈ K.

Corollary 1.3. This holds if K is a closed subspace of H.
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Theorem 1.3. If M is a closed subspace of a Hilbert space and h ∈ H, then f ∈M is the
closest point to h iff f ∈M and h− f ⊥M .

Definition 1.7. If A ⊆ H, the orthogonal complement of A is A⊥ = {h ∈ H : h ⊥ A}.

Remark 1.2. For any A, A⊥ is a closed, linear subspace.2

Theorem 1.4. Let M ⊆ H, h ∈ H, and let Ph be the closest point in M to h. Then

1. P (ah+ h′) = aPh+ Ph′

2. ‖Ph‖ ≤ ‖h‖

3. P 2h = Ph

4. kerP = M⊥, and imP = M .

Definition 1.8. P = PM is called the orthogonal projection onto M .

Corollary 1.4. (A⊥)⊥ = spanA.

Corollary 1.5. If Y is a linear subspace of H, then Y is dense in H if and only if
Y ⊥ = {0}.

2You could put in a picture of a rabbit, and A⊥ would be a closed subspace.
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2 More Hilbert Space Review

2.1 Linear functionals

Let H be a Hilbert space over F = R or C. We want to consider linear functionals
L : H → F.

Proposition 2.1. Let L : H → F be linear. The following are equivalent.

1. L is continuous.

2. L is continuous at 0.

3. L is continuous at one point.

4. L is bounded (∃c <∞ such that |L(h)| ≤ c‖h‖ for all h ∈ H).

Definition 2.1. For a bounded linear functional L its norm is

‖L‖ = inf{c > 0 : |L(h)| ≤ c‖h‖}

= sup

{
|L(h)|
‖h‖

: h ∈ H \ {0}
}

= sup{|L(h)| : ‖h‖ = 1}.

Theorem 2.1 (Riesz representation). If L : H → F is a bounded linear functional, then
there is a unique h0 ∈ H such that L(h) = 〈h, h0〉 for all h ∈ H. Moreover, ‖L‖ = ‖h0‖.

Corollary 2.1. If L : L2
R(µ)→ R is a bounded linear functional, then there exists a unique

h0 ∈ L2
R(µ) such that L(h) =

∫
hh0 dµ for all h ∈ L2

R(µ).

2.2 Orthonormal sets and bases

Definition 2.2. A subset E ⊆ H is orthonormal if 〈e, e′〉 = δe,e′ for all e, e′ ∈ E . E is a
basis if it is maximal under inclusion.

Proposition 2.2. Any orthonormal set is contained in a basis.

The proof uses Zorn’s lemma.3

Example 2.1. In L2
C([0, 2π]), let en(t) = 1/

√
2π
e

int
. The set {en : n ∈ Z} is an orthonormal

set (it is actually a basis, too).

Example 2.2. In Fn, let ek be the vector with all 0s except a 1 in the k-th coordinate.
Then {e1, . . . , en} is an orthonormal basis.

3You cannot do this without waving the magic set theory wand.
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Example 2.3. In `2 = {(xi)∞i=1 :
∑

i |xi|2 < ∞}, let en be the vector with all 0s except a
1 in the n-th coordinate. Then {en : n ∈ N+} is an orthonormal basis.

Theorem 2.2 (Gram-Schmidt procedure). If (hn)n≥1 is linearly independent, then there
is an orthonormal sequence (en)n≥1 such that for all N ∈ N, we have sspan{h1, . . . , hN} =
span{e1, . . . , eN}.

Proposition 2.3. Let {e1, . . . , en} be an orthonormal set in H, and let their span be
M = span{e1, . . . , en}. Then PMh =

∑n
i=1 〈h, ei〉 ei.

Proof. Recall that PMh is the unique vector in M such that h − PMh ⊥ M . Check this
property.

Theorem 2.3 (Bessel’s inequality). If (en)n≥1 is an orhonormal sequence in H and h ∈ H,
then

∑
i≥1 | 〈h, en〉 |2 ≤ ‖h‖2.

Proof. Fix n ∈ N. Then consider 〈h, e1〉 , · · · , 〈h, en〉 en, h−Pnh. The Pythagorean identity
gives

∑n
i=1 | 〈h, ei〉 |2 + ‖h − Pnh‖2 = ‖h‖2. Removing the term ‖h − Pnh‖2 gives the

inequality for n.

Corollary 2.2. If E is an orthonormal set in H and h ∈ H, then E0 = {e ∈ E : 〈h, e〉 6= 0}
is countable.

Proof. We have E0 =
⋃
n≥1 En, where En = {e ∈ E : | 〈h, e〉 | ≥ 1/n}. So Bessel’s inequality

implies |En| ≤ n2‖h‖2. In particular, each En is finite.

Corollary 2.3. If E is orthonormal in H and h ∈ H, then∑
e∈E
| 〈h, e〉 |2 ≤ ‖h‖2.

Remark 2.1. By the sum over all e ∈ E , we mean that it is a countable sum, since all but
countably many terms in the sum are 0 for each h ∈ H.

What if we want to talk about uncountable sums in general?

Definition 2.3. Let (hi)i∈I be an indexed family in H. Then∑
i∈I

hi = k

means that for every ε > 0, there is a finite F ⊆ I such that whenever F ⊆ F ⊆ I and
|G| <∞, we have ‖k −

∑
i∈G hi‖ < ε.4

4This can be rephrased in terms of nets. Let’s not do that.
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Lemma 2.1. If E is an orthonormal set in H, M = span E, and P = PM , then

Ph =
∑
e∈E
〈h, e〉 e.

Theorem 2.4. Let E be an orthonormal set in M . The following are equivalent:

1. E is a basis

2. If h ⊥ E, then h = 0.

3. span E = H

4. For all h ∈ H, h =
∑

e 〈h, e〉 e.

5. For all g, h ∈ H, 〈g, h〉 =
∑

e 〈g, e〉 〈e, h〉.

6. For all h ∈ H, ‖h‖2
∑

e | 〈h, e〉 |2.

Corollary 2.4. Any two bases of H have the same cardinality.

Definition 2.4. The dimension dimH is the cardinality of a basis of H.

Proposition 2.4. An infinite-dimensional Hilbert space is separable if and only if its di-
mension is dimH = ℵ0.

2.3 Isomorphisms and isometries

Definition 2.5. An isomorphism A : H → K is a surjective linear operator such that

1. 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ H

2. A is surjective.

If A only satisfies 1, it is called an isometry.

Example 2.4. A : `2 → `2 sending A(x1, x2, . . . ) = (0, x1, x2, . . . ) is an isometry but not
an isomorphism.

Proposition 2.5. A is an isometry if and only if ‖Ax‖K = ‖x‖H or all x ∈ H

Proof. ( =⇒ ) follows from the definition. To get (⇐= ), use the Polar identity.

Theorem 2.5. dimH = dimK if and only if H is isomorphic to K.

Proof. ( =⇒ ) Let E be a basis for H. Then define A : H → `2(E) as h 7→ (〈h, e〉)e∈E . We
get

H K

`2(E) `2(F)
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Corollary 2.5. An infinite-dimensional Hilbert space is separable if and only if it is iso-
morphic to `2(N).

Example 2.5. The Fourier transform is an isomorphism L2
C[0, 2π)→ `2C(Z) sending f 7→∫ 2π

0 fen dt.

2.4 Direct sums

Definition 2.6. Let H,K be inner product spaces. The direct sum H × K is an in-
nerproduct space with coordinatewise addition and the inner product 〈h⊕ k, h′ ⊕ k′〉 =
〈h, h′〉+ 〈k, k′〉. For an arbitrary family (Hi)i∈I , we define

⊕
i∈I

Hi =

{
(hi)i∈I ∈

∏
i∈I

hi :
∑
i∈I
‖hi‖2 <∞

}
, 〈(hi)i, (ki)i〉 =

∑
i

〈hi, ki〉 .
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3 Brief Introduction to Banach Spaces

3.1 Seminorms and norms

We will denote X as a vector space over F.

Definition 3.1. A seminorm on X is a function p : X → [0,∞) such that

1. p(x+ y) ≤ p(x) + p(y)

2. p(λx) = |λ|p(x) for all x ∈ X,λ ∈ F .

We call p a norm if p(x) = 0 =⇒ x = 0 (coercivity of p).

Remark 3.1. The second property implies p(0) = 0.

A norm has an associated metric d(x, y) = p(x− y).

Definition 3.2. If p is a norm, the pair (X, p) is called a normed space. If X is complete
with respect to this metric, we call it a Banach space.

Proposition 3.1. In a normed space, addition and scalar multiplication are continuous.

Lemma 3.1. Let p, q be seminorms on X. The following are equivalent:

1. p ≤ q

2. {x ∈ X : q(x) ≤ 1} ⊆ {x ∈ X : p(x) ≤ 1}

3. {x ∈ X : q(x) < 1} ⊆ {x ∈ X : p(x) < 1}

4. {x ∈ X : q(x) < 1} ⊆ {x ∈ X : p(x) ≤ 1}

Proof. (4) =⇒ (1): :et x ∈ X be such that q(x) ≤ a. Let ε > 0 be arbitrary. Then

q

(
x

a+ ε

)
≤ a

a+ ε
< 1,

so p(x/(a+ ε)) ≤ 1. This implies p(x) ≤ a+ ε.

Proposition 3.2. For all x, y ∈ X, |p(x)− p(y)| ≤ p(x− y).

Proof. The triangle inequality gives p(x) ≤ p(y) + p(x− y), so p(x)− p(y) ≤ p(x− y). Flip
x and y to get the negative version.

Remark 3.2. This tells us that the norm in a normed space is Lipschitz.

Definition 3.3. Two norms are equivalent if they generate the same topology.
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Proposition 3.3. ‖ · ‖1 and ‖ · ‖2 on X are equivalent if and only if there are constants
c, C > 0 such that

c‖ · ‖1 ≤ ‖ · ‖2 ≤ C‖ · ‖1.

Proof. (⇐= ): Given these inequalities, consider B2(x, ε) = {y ∈ X : ‖y − x‖2 < ε}. This
contains B1(x, ε/c). So the topology T‖·‖2 contains T‖·‖1 . The other inequality gives the
reverse inclusion.

( =⇒ ): Assume ‖ · ‖1 and ‖ · ‖2 are equivalent. Consider B1(0, 1). It must contain
some ‖·‖2 open neighborhood U of 0. So there is some ε > 0 such that B1(0, 1) ⊇ B2(0, ε).
This tells you that ‖ · ‖1 ≤ (1/ε)‖ · ‖2 by the lemma. We can do the reverse to get another
inequality.

Definition 3.4. (X, ‖ · ‖) and (X ′, ‖ · ‖′) are isometric5 if there is a linear bijection
A : X → X ′ such that ‖Ax‖′ = ‖x‖ for all x ∈ X. They are isomorphic if ‖·‖ and ‖A(·)‖′
are equivalent.

3.2 Examples of Banach spaces

Example 3.1. Let X be a Hausdorff6 topological space. Then let the space Cb(X) =
{bounded continuous functions X → F} equipped with the uniform/sup norm ‖f‖ :=
supx∈X |f(x)|. Then (Cb(X).‖ · ‖) is a Banach space.

Example 3.2. If I is any set with the discrete topology, the previous example gives
Cb(I) = `∞(I) = {(xi)i∈I ∈ FI : supi |xi| <∞}. If I = N, we call `∞(N) = `∞.

Example 3.3. IfX is locally compact, C0(X) = {f ∈ Cb(X) : ∀ε > 0, {|f | ≥ ε} is compact}
is a closed subspace of Cb(X). If X is compact, Cb(X) = C0(X) =: C(X).

We call c0 = C0(N) = {(xi)i ∈ FN : xi
i→∞−−−→ 0}.

Example 3.4. Let (X.Σ, µ) be a measure space. Then Lp(µ) for 1 ≤ p ≤ ∞ is a Banach
space with the norm ‖f‖p = (

∫
|f |p)1/p if p <∞ and ‖f‖∞ = ess sup |f |.

Example 3.5. Fix n ≥ 1, and let C(n)([0, 1]) = {f : [0, 1]→ F with n-fold conts. derivs.}.
With the norm ‖f‖ = max−≤k≤n supx |f (k)(x)|, C(n)([0, 1]) is a Banach space.

Similar spaces called Sobolev spaces, where we do not require the last derivative to
be continuous. These are useful for PDEs; people will define a Banach space of functions
with the correct amount of regularity to find a solution to a PDE inside.

5This is generally a really rigid condition. Theorems about isometry are almost always easy or false.
6We don’t actually need this, but analysts don’t like thinking about non-Hausdorff psaces. If you ever

wonder why the Hausdorff condition is there in a situation, it might be sociological prejudice.
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3.3 Bounded linear operators

Definition 3.5. A continuous linear operator X → X ′ is a linear operator which is
continuous according to the norm topologies.

Proposition 3.4. Let T : X → X ′ be linear. The following are equivalent:

1. T is continuous.

2. T is continuous at 0 (= 0X).

3. T is continuous at some point in X.

4. There exists some c <∞ such that ‖Tx‖′ ≤ c‖x‖ for all x ∈ X.

The proof is similar to the proof of the lemma from before. Because of condition 4,
continuous linear operators are often referred to as bounded.

Definition 3.6. B(X,X ′) denotes the vector space of bounded linear operators X → X ′.
This has the operator norm

‖T‖ = inf{c > 0 : ‖Tx‖′ ≤ c‖x‖ ∀x ∈ X}

= sup

{
‖Tx‖′

‖x‖
: x ∈ X \ {0}

}
= sup{‖Tx‖′ : ‖x‖ = 1}.

Example 3.6. Fix a measure space (X,Σ, µ) and 1 ≤ p ≤ ∞, and let ϕ ∈ C∞(µ). Then
the multiplication operator Mϕ : Lp(µ)→ Lp(µ) sending f 7→ ϕf is bounded:

‖Mϕf‖p =

(∫
|ϕf |p

)1/p

≤ ‖ϕ‖∞‖f‖p.

We can choose a positive measure set where ϕ is close to its essential supremum and let f
be the indicator of that set. This makes ‖Mϕf‖p arbitrarily close to ‖ϕ‖∞‖f‖p, so we get
‖Mϕ‖ = ‖ϕ‖∞.

Example 3.7. Consider Lp(µ). Assume K : X×X → F is such that there exist constants
c1, c2 <∞ such that ∫

|K(x, y)| dµ(x) ≤ C1 for µ-a.e. y,∫
|K(x, y)| dµ(y) ≤ C2 for µ-a.e. x.

Then the operator M : Lp → Lp defined by

Mf(x) :=

∫
K(x, y)f(y) dµ(y)

is well-defined, and ‖M‖ ≤ C1/q
1 C

1/p
2 , where 1/p+ 1/q = 1.
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Example 3.8. Let X,Y be compact, Hausdorff spaces, and let τ : Y → X be continuous.
Then the pullback/composition operator τ∗ : C(X) → C(Y ) given by f 7→ f ◦ τ is
bounded with ‖τ∗‖ ≤ 1. If Y 6= ∅, then ‖τ∗‖ = 1.
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4 Finite Dimensional Normed Spaces, Quotients, Products,
and Dual Spaces

4.1 Norms on finite dimensional space

Theorem 4.1. Let X be a normed space. If dimX < ∞, then any two norms on X are
equivalent.

Proof. We can assume X = Fn. If ‖ · ‖ is a mystery norm, we show that ‖ · ‖ is equivalent
to the `1 norm |x| =

∑n
i=1 |xi|.

Step 1: Let e1, . . . , en be the standard orthonormal basis of Fn. Then let M :=
max1≤i≤n ‖ei‖. Then

‖x‖ =

∥∥∥∥∥
n∑
i=1

xiei

∥∥∥∥∥ ≤∑
i

|xi|‖ei‖ ≤M |x|.

Step 1.5: This shows that Id : Fn → Fn is continuous from | · | to ‖ · ‖. So {x : |x| = 1}
is compact according to ‖ · ‖.

Step 2: So we get ε > 0 such that any x with |x| = 1 has ‖x‖ ≥ ε. So {‖ · ‖/ε < 1} ⊆
{| · | < 1}. That is, | · | ≤ (1/ε)‖ · ‖.

Remark 4.1. A result called John’s theorem gives explicit constants dependent on n.7

Corollary 4.1. Any finite dimensional subspace of a normed space is closed.

Corollary 4.2. Let X,Y be a normed spaces with dimX < ∞. Then if T : X → Y is
linear, it must be continuous.

Proof. ‖x‖X + ‖Tx‖Y is a norm for X, so there is a constant M < ∞ such that ‖x‖X +
‖Tx‖Y ≤M‖x‖X .

4.2 Quotients in normed spaces

Let X be a normed space over F with a subspace M . Linear algebra tells you that the
quotient X/M = {x+M : x ∈ X} is a vector space.

Definition 4.1. The quotient space X/M has the quotient seminorm ‖x + M‖ :=
inf{‖x− y‖ : y ∈M} = dist(x,M).

Lemma 4.1. The quotient seminorm is a norm if and only if M is closed.

Definition 4.2. The quotient map is the map Q : X → X/M given by x 7→ x+M .

Theorem 4.2. The quotient has the following properties:

7Check out the proof of this one!
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1. ‖Qx‖ ≤ ‖x‖ for all x ∈ X.

2. If X is a Banach space and M is closed, then X/M is a Banach space.

3. U ⊆ X/M is open if and only if Q−1(U) is open in X.

4. Q is an open mapping.

Proof. 1. Since 0 ∈M , ‖x+M‖ ≤ ‖x+ 0‖ = ‖x‖.

2. Suppose (xn +M)n is Cauchy in X/M . Then there is a subsequence (xni +M)i such
that ‖xni − xni+1 +M‖ < 2−i for all i. Then there is a yi ∈ M + (xni − xni+1) such
that ‖yi‖ < 2−i. Now xn2 ∈ xn1 +y1 +M , xn3 ∈ xn1 +y1 +y2 +M , and so on, giving
us xni+1 ∈ xn1 + y1 + · · · yi +M , where xni + y1 + · · · yi is a Cauchy sequence in X.

Now suppose that xni +y1 + · · · yi → z. Then ‖xni+1 − z+M‖ → 0. Then xn+M →
z +M in X/M

3. This is a rephrasing of (4).

4. Continuity follows from part(1). If U ⊆ X is open, x ∈ U , and B(x, ε) ⊆ U , then
any y +M ∈ BX/M (x+M, ε) = Q(B(x, ε)) ⊆ Q(U).

Definition 4.3. We use M ≤ X to say that M is a closed subspace of X.

Theorem 4.3. If X is a normed space, M ≤ X, and N is any finite dimensional subspace,
then M +N = {x+ y : x ∈M,y ∈ N} is closed.

Proof. Observe that M +N = Q−1(Q(N)). Q(N) is finite dimensional, so it is closed. Q
is continuous, so Q−1(Q(N)) is closed.

Remark 4.2. This is surprisingly tricky to prove without using the quotient X/M .

4.3 Products of normed spaces

If we have a general family (Xi)i∈I of normed spaces, there is no canonical norm on the
product. We may define notions of product by considering various subspaces of

∏
i∈I Xi.

Example 4.1. Fix 1 ≤ p < ∞. The `p-direct sum
⊕

pXi = {(xi)i∈I ∈
∏
iXi :√∑

i ‖xi‖
p
i <∞} is a normed space with the norm ‖(xi)i :=

√∑
i ‖xi‖

p
i .

Example 4.2. The `∞-direct sum
⊕
∞Xi = {(xi)i∈I ∈

∏
iXi : supi ‖xi‖i < ∞} is a

normed space with the norm ‖(xi)i := supi ‖xi‖i <∞.

Example 4.3. If I = N, we also have
⊕

0Xi = {(xi)i∈I ∈
∏
iXi : ‖xi‖i → 0}.
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Proposition 4.1. 1. For each of these notions of product X, X is complete if and only
if Xi is complete for all i.

2. X → X/{(xi)i∈I : xi = 0} is an isometry to Xi.

3. Each coordinate projection X → Xi has norm 1 and is open.

4.4 Dual spaces

Definition 4.4. The dual of X is the space X∗ := B(X,F) of bounded linear functionals.
The dual norm is ‖L‖∗ := sup{|L(x)| : ‖x‖ = 1}.

Proposition 4.2. If Y is complete, B(X,Y ) is complete.

Corollary 4.3. X∗ is a Banach space.

Here is a proof of this fact independent of the general fact about operators.

Proof. Let L ∈ X∗, and consider L|B restricted to the closed unit ball. Then L|B ∈ Cb(B).
So the map ρ sending L 7→ L|B gives us that ρ(X∗) is a lienar subspace of Cb(X). Moreover,
ρ(X∗) is closed. Since Cb(B) is complete, so is

Example 4.4. Let X = c0 = {(xi)i∈N ∈ RN : xi → 0}. Then L(x1, x2, . . . ) = x1 is a linear
functional.

Let ei be the vector with all 0s but a 1 in the i-th coordinate. Then {e1, e2, . . . , } ∪
{(1, 1/2, 1/3.1/4, . . . )} is linearly independent. So there exists a linear functional L : c0 →
R such that L(ei) = 0 for all i and L(1, 1/2, 1/3, . . . ) = 1. This L is not continuous.
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5 The Hahn-Banach Theorem

5.1 Examples of Dual Spaces

Here are examples of concrete descriptions of some dual spaces.

Example 5.1. If (X,Σ, µ) is a measure space, 1 < p < ∞, and p−1 + q−1 = 1, then the
map Lq → (Lp(µ))∗ given by g 7→ Lg is a linear isometry, where Lg(f) =

∫
X fg dµ.

Example 5.2. If (X,Σ, µ) is σ-finite, then L∞(µ) 7→ (L1(µ))∗ given by g 7→ Lg is an
isometric isomorphism, where Lg(f) =

∫
fg dµ.

Example 5.3. Let X be a locally compact Hausdorff space, and let M(X) be the set
of F-valued regular8 Borel measures on X with ‖µ‖ equalling the total variation of µ.
Then the map M(X) → C0(X)∗ given by µ 7→ Lµ is an isometric isomorphism, where
Mµ(f) =

∫
X f dµ.

5.2 The Hahn-Banach theorem

Let X be a vector space over F.

Definition 5.1. A sublinear functional on X is a function p : X → R such that

1. p(x+ y) ≤ p(x) + p(y)

2. p(αy) = αp(y) for all α ∈ [0,∞).

Example 5.4. Any seminorm is a sublinear functional.

Theorem 5.1 (Hahn-Banach). Let F = R, let M be a linear subspace of X, and let p be
a sublinear functional on X. If f : M → R is linear and f ≤ p|M , then there is a linear
F : X → R such that F |M = f and F ≤ p.

Proof. Step 1: Assume dim(X/M) = 1. Then there is some x0 ∈ X such thatM+Rx0 = X.
We must find something of the form F (y + tx0) = f(y) + tα0 for some α0 ∈ R such that
F ≤ p. What must α0 satisfy? We need f(y) + tα0 ≤ p(y) + tx0) for all y ∈M, t ∈ R.

• If t > 0, divide by t to get f(y′) + α0 ≤ p(y′ + x0) for all y′ ∈ M . That is, we need
α0 ≤ infy′∈M p(y′ + x0)− f(y′).

• If t < 0, divide by −t to get f(y′)− α0 ≤ p(y′ − x0) for all y′ ∈M . That is, we need
α0 ≥ supy′∈M f(y′)− p(y′ − x0).

8For general locally compact spaces, “regular” can have different meanings. Take it to have the meaning
that makes this theorem work.
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It remains to check that for any y′, y′′ ∈ M , f(y′′) = p(y′′ − x0) ≤ p(y′ − x0) − f(y′) (so
such an α0 exists). We can rearrange this to get f(y′ + y′′) ≤ p(t′ + x0) + p(y′′ − x0). But
this is true because

f(y + y′′) ≤ p(y′ + y′′) ≤ p(y′ + x− 0) + p(y′′ − x0)

by the subadditivity of p.
Step 2: The idea is to “iterate” Step 1 to get the general case. Let P be the collection

of pairs (N, g) where N is a linear subspace such that M ⊆ N ⊆ X, g : N → R is linear,
and g|M = f . We have the partial ordering (N, g) ≤ (N ′.g′) if N ⊆ N ′ and g′|N = g.
If ((Ni, gi))i is a chain in P, then (

⋃
iNi,

⋃
i gi) ∈ P is an upper bound for the chain.

By Zorn’s lemma, there is a maximal element (N, g) ∈ P. We now must have N = X;
otherwise, apply Step 1 to N ⊆ N +Rx1 for some x1 ∈ X \N to contradict the maximality
of N .

Theorem 5.2 (complex Hahn-Banach). Let F = C, let M be a linear subspace of X, and
let p be a sublinear functional on X. If f : M → C is such that |f(x)| ≤ p(x) for all
x ∈M , then there exists some linear F : X → C such that F |M = f and |F | ≤ p.

Proof. Here is the sketch. Treat X as a real vector space. Then g = Re(f) is an R-linear
functional M → R. Extend g via the real Hahn-Banach theorem to get G on all of X. If
G : X → R is R-linear, then F (x) = F (x)− iG(ix) is C-linear. Then ‖F‖ = ‖G‖.

Here is the special case where p is a norm.

Corollary 5.1. Let X be a normed space over F ∈ {R,C}. If M is a linear subspace and
f ∈M∗, then there is an F ∈ X∗ such that F |M = f and ‖F‖ = ‖f‖.

5.3 Corollaries of Hahn-Banach

Corollary 5.2. Let X be a normed space over F, let x1, . . . , xn ∈ X be linearly independent,
and let α1, . . . , αn ∈ F. Then there is some f ∈ X∗ such that f(xi) = αi for all i.

Proof. Define f by f(xi) = αi on span{x1, . . . , xn}. This is automatically bounded since
this is a finite dimensional subspace. Now apply Hahn-Banach.

Corollary 5.3. Let X be a normed space over F, and let x ∈ X. Then ‖x‖ = max{|f(x)| :
f ∈ X∗, ‖f‖ ≤ 1}.

Proof. (≥): This follows from the definition of the dual norm.
(≤): Apply the previous corollary with x1 = x and α1 = ‖x‖.

Corollary 5.4. Let X be a normed space over F, let M be a non-dense linear subspace, and
let x ∈ X. Then there is an f ∈ X∗ such that f |M = 0, ‖f‖ = 1 and f(x) = dist(x,M).

20



Proof. Consider the quotient map Q : X → X/M . By Hahn-Banach, there exists an
f0 ∈ (X/M)∗ such that ‖f0‖ = 1 and f0(x + M) = dist(x,M). Let f := f0 ◦ Q. Then
f(y) = f0(y +M) for all y ∈ X.

Corollary 5.5. If X is a normed space and M is a linear subpsace, then

M =
⋂
f∈X∗
f |M=0

ker f.

Proof. (⊆): ker f ⊇M for each element in the intersection, and each ker f is closed.
(⊇): If x ∈ X \ M , then take f from the previous corollary. Then f(x) > 0, so

x /∈
⋂
f ker f .
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6 Applications of The Hahn-Banach Theorem

The last application we will go over is not in Conway’s textbook.

6.1 Banach limits

Let F = R and `∞ = `∞(N). Then c = {(xn) ∈ `∞ : limn xn exists} is a closed subspace.
lim is a bounded linear functional on c, so we can extend it to all of `∞.

Theorem 6.1. There exists an L ∈ (`∞)∗ such that

1. L(x) = limn xn for all x ∈ c,

2. L(x) ≥ 0 if xn ≥ 0 for all n,

3. L(σ(x)) = L(x), where σ(x) = (x2, x3, . . . ).

Proof. Let M = {x − σ(x) : x ∈ `∞}, which is a linear subspace of `∞. We will apply a
corollary of Hahn-Banach to get an L that kills M and L((1, 1, . . . )) = 1.

Claim: dist(1 = (1, 1, . . . ),M) = 1. Let x− σ(x) ∈M . Then

dist(1, x− σ(x)) = sup
n
|1− (xn − xn+1)|.

Since (xn) ∈ `∞, the right hand side gets arbitrarily close to 1 when xn is close to infm xm.
So there exists an L ∈ (`∞)∗ such that L(M) = 0, L(1) = 1 and ‖L‖ = 1. This covers
property 3.

For property 2, use ‖L‖ = 1 and L(1) = 1. It’s similar to the fact that if µ is a signed
measure, then |µ|(X) = |µ(X)| =⇒ µ = 0.

For property 1, suppose x ∈ c and let α := limn xn. We claim that ‖σn(x)‖ − α1‖ → 0
as n→∞; this is a rewording of α := limn xn. So L(x) = L(σn(x))→ αL(1) = α.

Corollary 6.1. c0 ⊆ kerL.

6.2 Dual of quotients by subspaces

Let X be a normed space, and let M ≤ X (i.e. M is a closed subspace).

Definition 6.1. The annihilator of M is M⊥ := {L ∈ X∗ : L|M = 0}.

Theorem 6.2. Let X be a normed space, and let M ≤ X. Then the map X∗/M⊥ →M∗

sending f +M⊥ 7→ f |M is an isometric isomorphism.

Proof. This map is linear. We need to show that it is surjective and that ‖f |M‖ = ‖f +
M⊥‖. We have the inequality ≤. The rest of the proof follows from the following claim:
Given g ∈ M∗, there exists some f ∈ X∗ such that f |M = g and ‖f‖ = ‖g‖. This is just
Hahn-Banach.
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Theorem 6.3. Let O : X → X/M be the quotient map. Then the map (X/M)∗ →M⊥ ⊆
X∗ given by g 7→ g ◦Q is an isometric isomorphism.

Proof. Any v inM⊥ defines a linear functional on X/M . We want it to be bounded with
the same norm:

‖f‖ = sup{|f(x)| : x ∈ X, ‖x‖ ≤ 1} =⇒ f(x) ≤ ‖f‖ · ‖x+M⊥‖

for all x. And Q is surjective.

6.3 The double dual

We can keep taking the dual spaces of dual spaces to get X∗, X∗∗, X∗∗∗, . . . .

Definition 6.2. The natural map X → X∗∗ is given by x 7→ x̂, where x̂(f) = f(x).

Lemma 6.1. The natural map is isometric.

Proof. Since |x̂(f)| ≤ ‖f‖ · ‖x‖, we have ‖x̂‖ ≤ ‖x‖. Equality is by Hahn-Banach.

Definition 6.3. X is reflexive if X̂ = X∗∗; i.e. the natural map is surjective.

Example 6.1. Let 1 < p <∞. Then Lp(µ) is reflexive by Riesz representation.

Example 6.2. Id dimX <∞, then X is reflexive.

Example 6.3. c0 = C0(N) is not reflexive. c∗0 is the collection of signed finite measures on
N, which is `1(N) by Riesz-representation. So c∗∗0 is `∞(N), which is bigger than c0.

6.4 Optimal transport

Let (X, ρ) be a metric, and let µ, ν ∈ Prob(X). We want to move the mass according to
the distribution µ to that of ν. This is called the transport problem. For infinitesimal
regions dx, dy, think of λ(dx, dy) as how much mass moves from dx to dy. We interpret
λ ∈ Prob(X ×X).

λ has to satisfy ∑
dy

λ(dx, dy) = µ(dx),
∑
dx

λ(dx, dy) = ν(dy)

so we want
λ(A×X) = µ(A), λ(X ×B) = ν(B)

for all measurable A,B ⊆ X.

Definition 6.4. A measure λ with these properties is called a coupling of µ, ν.
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Call the collection of all such couplings C.

Example 6.4. The product measure λ = µ× ν is a coupling.

Let’s suppose it costs us to move mass from dx to dy. Then we want to find λ and
estimate

min
λ∈C

∫
ρ(x, y) dλ(x, y).

This is not the inf because it is weak*-continuous.
Obstructions: Suppose f ∈ L, the collection of 1-Lipschitz functions X → R. Then for

λ ∈ C,∫
f dµ−

∫
f dν =

∫
(f(x)− f(y)) dλ(x, y) ≤

∫
|f(x)− f(y)| dλ(x, y) ≤

∫
ρ dλ.

Theorem 6.4. Let D := supf∈L |
∫
f dµ −

∫
f dν|. THen there exists a λ ∈ C such that∫

ρ dλ = D.

Remark 6.1. This theorem says that these obstructions are the only ones.

Proof. Equivalently, by Riesz representation, we want φ ∈ C(X ×X)∗ (which corresponds
to λ) such that

1. (coupling) φ(f(x) · 1(y)) =
∫
f dµ and φ(1(x) · g(y)) =

∫
g dν for all f, g ∈ C(X),

2. (minimizer) φ(ρ) = D,

3. (probability measure) ‖φ‖ = φ(1X×X) = 1.

So define M := {f(x) + g(y) + aρ(x, y); f, g ∈ C(X), a ∈ R} ⊆ C(X × Y ). Define ψ on M
by

ψ(f + g + aρ) =

∫
f dµ+

∫
g dν + aD.

We need to check that ψ is well-defined and ‖ψ‖M∗ ≤ 1. Taking b = 0, 1 it follows
from the claim: If f + g + aρ ≤ b, then ψ(f + g + aρ) ≤ b. It is equivalent to show that if
f + g ≤ b+ aρ for all x, y then

∫
f dµ+

∫
g dν ≤ b+ aD.

Case 1: a ≤ 0. This is straightforward and is in the online notes.
Case 2: a > 0. We may assume a = 1. Rewrite this as f(x) ≤ infy[b−g(y)+ρ(x, y)] =:

h(x) ∈ L. Then f ≤ h ≤ b− g(x), so∫
f dµ ≤

∫
h dµ ≤

∫
d dν +D ≤ b−

∫
g dν +D.

• Start with b− g(x)

• Draw cones at each point on the graph.

• Take h to be the minimum of the cones.

Then applying Hahn-Banach to ψ gives φ.
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7 The Open Mapping Theorem, Closed Graph Theorem,
and Uniform Boundedness Principle

7.1 The open mapping theorem

Definition 7.1. Let X and Y be topological spaces. A function f : X → Y is open if
f [U ] is open for all open U ⊆ X.

Remark 7.1. In metric spaces, this is equivalent to: For all B(x, r) ⊆ X, there is an ε > 0
such that f [B(x, r)] ⊇ B(f(x), ε). In normed spaces, it is enough to check this at x = 0X .

Theorem 7.1 (Open mapping theorem). Let X,Y be Banach spaces. If A : X → Y is a
bounded linear surjection, then A is open.

Proof. Step 1: Write Y =
⋃∞
n=1A(BX(0, n)). By the Baire category theorem, these cannot

all be nowhere dense. So there exist n ∈ N, y ∈ Y , t > 0 such that A(BX(0, n)) ⊇ By(y, t).
The left hand side is symmetric under z 7→ −z, so A(BX(0, n)) ⊇ BY (−y, t), as well. By
convexity,

A(BX(0, n)) ⊇
{

1

2
(y + z) +

1

2
(−y + w) : ‖z‖Y , ‖w‖Y < t

}
=

{
1

2
z +

1

2
w : ‖z‖Y , ‖w‖Y < t

}
= BY (0, t).

Step 2: For any a > 0,
A(BX(0, an)) ⊇ B(0, at).

Step 3: We will show that A(BX(0, 2)) ⊇ B(0, r). for r = t/n. Let y ∈ BY (0, r). By
step 2, there is an x1 ∈ BX(0, 1) such that ‖y−Ax1‖ < r/2. Let y1 = y−Ax1, and choose
x2 ∈ Bx(0, 1/2) such that ‖y1 − Ax2‖ < r/2. In this way, pick yn, xn+1 for each n. Let
x =

∑∞
n=1 xn; this converges because the lengths are bounded by a convergent geometric

series: ‖x‖ ≤
∑

n ‖xn‖ < 2. Then Ax =
∑∞

n=1Axn. For each N ∈ N,

y −
N∑
n=1

Axn = y1 −
N∑
n=2

Axn = y2 −
N∑
n=3

Axn = · · · = yN ,

and ‖yN‖ − r/2N−1 → 0. So y = Ax.

Corollary 7.1. A bounded linear bijection between Banach spaces is an isomorphism.

Proof. Since A : X → Y is a bijection, A−1 exists as a linear transformation Y → X.
Boundedness of A−1 is precisely the openness of A.

Definition 7.2. If A : X → Y , then graph of A is gra(A) := {(x,Ax) : x ∈ X} ⊆ X ⊕ Y .
It is a linear subspace of X ⊕ Y with the graph norm ‖(x, y)‖ = ‖x‖X + ‖y‖Y .
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7.2 The closed graph theorem

Corollary 7.2 (Closed graph theorem). Let X,Y be Banach spaces, and let A : X → Y
be a linear transformation. If gra(A) is closed, then A is continuous.

Proof. gra(A) is a closed subspace of a Banach space, so it is complete. In the following
diagram, A = P2 ◦ Ã, so it is enough to show that Ã is continuous.

A gra(A)

Y

Ã:x 7→(x, Ax)

A
P2:(x, y) 7→y

But Ã = (P1|gra(A))
−1, so it is continuous by the previous corollary.

Example 7.1. Let X = C(1)[0, 1] and Y = C[0, 1], both with the uniform norm. Then A
sending f 7→ f ′ is not continuous. But its graph, gra(A) = {(f, f ′) : f ∈ C(1)} is closed:
Suppose (fn)n is such that fn → g uniformly, and f ′n → h uniformly. Then fn − f → 0,
which means that f ′n− g′ → h− g′ uniformly; sp we may assume that fn → 0 and f ′n → h.
We must show that h = 0. We have that for all t ∈ [0, 1]. so∫ t

0
h(s) ds = lim

n

∫ t

0
f ′n = lim

n
[fn(t)− fn(0)] = 0.

So h = 0.

In general, gra(A) is closed if xn → 0 and Axn → y implies y → 0. This is often easier
to check than continuity.

7.3 The principle of uniform boundedness

Theorem 7.2 (Principle of uniform boundedness). Let X be a Banach space, let Y be a
normed space, and let A ⊆ B(X,Y ). Assume that sup{‖Ax‖ : A ∈ A} <∞ for all x ∈ X.
Then sup{‖A‖ : A ∈ A} <∞.

Instead of citing Baire category, we will adapt the proof of that theorem to prove this.

Proof. Assume, towards a contradiction, that M(x) := sup{‖Ax‖ : A ∈ A} <∞ for all x,
but supA∈A ‖A‖ =∞. So for every ε > 0, there is an x ∈ X and A ∈ A such that ‖x‖ < ε
and ‖Ax‖ > 1/ε.

Construct sequences (xn) in x and (An) in A by recursion: Pick any ‖x1‖ = 1 and any
A1. Now choose (x2, A2) such that ‖x2‖ ≤ 1/2, ‖A1x2‖ ≤ 1/2, and ‖A2x2‖ > 2 +M(x1).
Now choose (x3, A3) such that ‖x3‖, ‖A1x3‖, ‖A2x3‖ < 1/4 but ‖A3x3‖ > 3 + M(x1) +
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M(x2). At the n-th stage, choose (xn, An) such that ‖xn‖, ‖A1xn‖, . . . , ‖An−1xn‖ < 1/2n

but ‖Anxn‖?n+M(x1) +M(x2) + · · ·+M(xn−1).
Now let x =

∑∞
n=1 xn. Then

Akx =

∞∑
n=1

Akxn

=
k−1∑
n=1

Akxn︸ ︷︷ ︸
‖·‖≤M(x1)+···+M(xk+1)

+ Akxk︸ ︷︷ ︸
‖·‖>k+M(x1)+···+M(xk−1)

+
∞∑
k+1

Akxn︸ ︷︷ ︸
‖·‖≤2−k

So ‖Akx‖ > k − 1, which implies that M(x) =∞. This is a contradiction.

Corollary 7.3. Let X be a Banach space. If A ⊆ X∗ is such that sup{|L(x)| : L ∈ A} for
all x, then supL∈A ‖L‖ <∞.

Corollary 7.4. Let Y be a normed space. If A ⊆ Y and sup{|L(a)| : a ∈ A} <∞ for all
L ∈ Y ∗, then supa∈A ‖a‖ <∞.

Proof. Consider the natural embedding of A into Â ⊆ Y ∗∗.

Corollary 7.5. Let X be a Banach space, let Y be a normed space, and let A ⊆ B(C, Y ).
If sup{|L(Ax)| : A ∈ A} <∞ for all x ∈ X and L ∈ Y ∗, then A is uniformly bounded.

Proof. This is a double application of the principle of uniform boundedness.

Theorem 7.3 (Banach-Steinhaus). Let X,Y be Banach spaces. Let (An)n be a sequence
in B(X,Y ). If for every x, there is a y such that Anx→ y, then

1. supn ‖An‖ <∞,

2. There exists some A ∈ B(X < Y ) such that Anx→ Ax.
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8 Locally Convex Topological Vector Spaces

8.1 Topologies generated by seminorms

Definition 8.1. A topological vector space (TVS) over F is a vector space (X, T )
with a topology such that

1. X ×X → X sending (x, y) 7→ x+ y is continuous,

2. F×X → X sending (α, x) 7→ αx is continuous.

Let X be a vector space over F, and let P be a family of seminorms on X. We can use
P to generate a topology (like how we do with norms). We get a base for the topology
given by{

k⋂
i=1

{x : p(x− xi) < εi} : p1, . . . , pk ∈ P, x1, . . . , xk ∈ X, εi, . . . , εk > 0

}
.

Definition 8.2. A TVSX is a locally convex space (LCS) if the topology is is generated
by some family P of seminorms and

⋂
p∈P{x : p(x) = 0} − {0} (the seminorms separate

points).

Proposition 8.1. Let X be a TVS, and let p be a seminorm on X. The following are
equivelent:

1. p is continuous.

2. {x : p(x) < 1} is open.

3. 0 ∈ int{x : p(x) < 1}.

4. 0 ∈ int{x : p(x) ≤ 1}.

5. p is continuous at 0.

6. There is a continuous seminorm q such that p ≤ q.

Proof. The first four statements get weaker, so we have (1) =⇒ (2) =⇒ (3) =⇒ (4).
(4) =⇒ (5): Let ε > 0. Then

U = int{x : p(x) ≤ ε/2} = ε/2 · (int({x : p(x) ≤ 1})).

(5) =⇒ (1): Compose with translations.
(6) =⇒ (1): Suppose taht p ≤ q. Then 0 ∈ {q < 1} ⊆ int{p < 1}.

Proposition 8.2. Let p1, . . . , pn be continuous seminorms. Then p1 + · · ·+pn and maxi pi
are continuous seminorms.
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Proposition 8.3. If (pi)i is a family of continuous seminorms and pi ≤ q for all i, where
q is a continuous seminorm, then supi pi is continuous.

Example 8.1. Let X be a (Tychonoff)9 topological space, let K ⊆ X be compact, and
let pK(f) = ‖f |K‖sup. Then {pK : K ⊆ X compact} generate a locally convex topology.

On Rn, this topology is generated by {p
B(0,n)

: n ∈ N}.

Example 8.2. Let X be a normed space. For any f ∈ X∗, let pf (x) = |f(x)|. Then X
with the resulting LCS structure is called X with the weak topology.

8.2 Convex sets

Definition 8.3. Let X be a vector space, and let A ⊆ X. The convex hull of A is

coA :=
⋂
{C : C ⊇ A,C convex}.

The closed convex hull of A is

coA :=
⋂
{C : C ⊇ A,C convex and closed}.

Proposition 8.4. coA = coA.

Proof. (⊇): The left hand side, closed, convex and contains A.
(⊆): It suffices to show that coA is convex. Consider c = ta+(1−t)b for a a, b ∈ coA and

0 < t < 1. Consider F : X×X → X given by (x, y) 7→ tx+(1− t)y; F is continuous. Then
for any neighborhood W 3 c, there is a neighborhood W ′ 3 (a, b) such that F [W ′] ⊆ W .
By the definition of the product topology, we can find a neighborhood U × V ⊆ W ′ with
the same property. Now pick a′ ∈ U ∩ coA and b′ ∈ B ∩ coA. Now F (a′, b′) ∈ W ∩ coA.
So c ∈ coA, as desired.

8.3 Correspondence between nice convex sets and seminorms

Definition 8.4. Let X be a vector space over F, and let A ⊆ X be convex.

1. A is balanced if αA ⊆ A for all α ∈ F and |α| ≤ 1.

2. A is absorbing if for all x ∈ X, there is a β ∈ (0,∞) such that x ∈ βA.

3. A is absorbing at a ∈ A if A− a is absorbing.

Proposition 8.5. Let X be a vector space over F. If V is a nonempty, balanced, convex
set which is absorbing at all its points, then there is a unique seminorm on X such that
V = {x : p(x) < 1}.

9This means that it is Hausdorff and whenever xınX and A ⊆ X is closed, there is an f ∈ C(X) such
that f(x) = 0 and f |A = 1. If X is not Tychonoff, this still works, but the space is actually very small.
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Proof. Define p(x) := inf{t ≥ 0 : x ∈ tV }. This is called the Minkowski functional of
V . Then p is a seminorm:

• (homogeneity): p(αx) = inf{t : αx ∈ tV } = |α| inf{t : α
|α|x} = |α|p(x).

• (subadditivity): If x, y, suppose x ∈ tV and y ∈ sV . Then x+y ∈ tV +sV = (t+s)V
(by convexity). So if p(x) ≤ t and p(y) ≤ s, then p(x+ y) ≤ t+ s.

If p(x) < 1, then x ∈ tV for some t < 1. Because V is balanced, V ⊇ tV , so x ∈ V .
This gives {p < 1} ⊆ V .

Conversely, suppose x ∈ V . Then p(x) ≤ 1. Since V is absorbing at x, there exists
some ε > 0 such that x+ εx ∈ V . So p(x) ≤ 1/(1 + ε) < 1. This gives V ⊆ {p < 1}.

Uniqueness: if seminorms satisfy {p < 1} = {q < 1}, then p = q (from lecture 1).

Corollary 8.1. A TVS is a LCS if and only if the collection of convex, balanced sets
absorbing all their own points is a neighborhood base at 0.

Proposition 8.6. A LCS is generated by a translation invariant metric if and only if it
is generated by a countable family of seminorms.

Proof. If (pn)∞n=1 is a sequence of seminorms, then we can define

d(x, y) :=
∞∑
n=1

2−n
pn(x− y)

1 + pn(x− y)
.

Definition 8.5. A convex set A in a TVS X is bounded if for any neighborhood U of 0,
there is a t <∞ such that tU ⊇ A.

Theorem 8.1. A LCS is normable if and only if it has a bounded, open neighborhood of
0.
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9 Metrizibility and Normability of LCSs and The Geometric
Hahn-Banach Theorem

9.1 Metrizable locally convex spaces

When is a LCS topology metrizable?

Theorem 9.1. Let X be a LCS. Then X is metrizable (with a translation invariant metric)
if and only if its topology can be generated by a countable family of seminorms.

Proof. Suppose the topology is generated by (pn)n. Define

d(x, y)

∞∑
n=1

2−n
pn(x− y)

1 + pn(x− y)
.

For every ε > 0 and N ∈ N, there is a δ > 0 such that

{y : d(x, y) < δ} ⊆
N⋂
n=1

{y : pn(x− y) < ε}.

Conversely, for any ε > 0 and N ∈ N such that

{y : d(x, y) < δ} ⊇
N⋂
n=1

{y : pn(x− y) < ε}.

Now assume d is a translation invariant metric generating the topology of X. Then {x :
d(0, x) < 1/n} for n ∈ N form a neighborhood base at 0. Let P be any family of seminorms
generating the topology. Then for any n, there exist seminorms pn,1, . . . , pn,Nn ∈ P and
εn > 0 such that

n⋂
i=1

{x : pn,i(x) < εn} ⊆ {x : d(0, x) < 1/n}.

Now P0 =
⋃∞
n=1{pn,1, . . . , pn,Nn} is countable and generates the same topology.

Example 9.1. C(Rn) has the metric

d(f, g) :=

∞∑
n=1

2−n
‖f |Bn − g|Bn‖∞

1 + ‖f |Bn − g|Bn‖∞
.

Definition 9.1. A TVS is a Fréchet space if its topology can be generated by a complete,
translation invariant metric.
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9.2 Normable locally convex spaces

When does a LCS have a norm?

Definition 9.2. A ⊆ X is bounded if for any neighborhood U 3 0, there is an ε > 0 such
that U ⊇ εA.

Theorem 9.2. A LCS X is normable if and only if it has a nonempty, open, bounded
neighborhood of 0.

Proof. Let B be a nonempty, open, bounded subset B 3 0. By openness, there is a
continuous seminorm p such that B ⊇ {p < ε} for some ε. We can assume that B ⊇
{p < 1}. We must show that p generates the topology. Let q be another continuous
seminorm on X, and consider {q < δ}. By boundedness, there exists some ε > 0 such that
ε{p < 1} = {p < ε} ⊆ {q < δ}. So p generates the topology. Since an LCS must separate
points, p must actually be a norm.

9.3 The geometric Hahn-Banach theorem

Since continuous linear functionals make sense for LCS spaces, we still denote the dual
space as X∗. It will have a topology, but we will not discuss which topology yet.

Proposition 9.1. Let f : X → F be a linear functional. The following are equivalent:

1. f is continuous.

2. f is continuous at 0.

3. f is continuous at some point.

4. ker f is closed

5. x 7→ |f(x)| is a continuous seminorm.

If X is an LCS generated by P, then also iff

6. There exist p1, . . . , pn ∈ P and α1, . . . , αn ∈ [0,∞) such that |f | ≤
∑n

i=1 αipi.

Proof. (5) =⇒ (2): f is continuous at 0 iff for every ε > 0, the set {x : |f(x)| < ε} is a
neighborhood of 0.

(5) =⇒ (6): For any ε > 0, there exist p1, . . . , pn ∈ P and β1, . . . , βn > 0 such that
{|f | < ε} ⊇

⋂n
i=1{pi < βi}. So |f | < ε∑

i βi

∑
i pi.

Proposition 9.2. Let X be a TVS, and let G ⊆ X be an open, convex neighborhood of
0. Then q(x) := inf{t ≥ 0 : tG 3 x} is a nonnegative continuous sublinear functional (and
G = {q < 1}).

32



Theorem 9.3 (Geometric Hahn-Banach theorem). Let X be a TVS, and let G ⊆ X be a
nonempty, open, convex set with G 63 0. Then there is a closed hyperplane M ⊆ X such
that M ∩G = ∅.

Proof. Suppose F = R. Let x0 ∈ G, and let H := G−x0 be an open, convex neighborhood
of 0. Then 0 ∈ H, but −x0 /∈ H; as H is convex, tH 63 −x0 for any 0 ≤ t < 1.
Let q(x) := inf{t ≥ 0 : tH 3 x} as in the proposition. Then q(−x0) ≥ 1. Now let
Y = span{−x0}. Then g : Y → R with g(−x0) = 1 is a continuous linear functional, and
Hahn-Banach gives a linear f : X → R such that f(−x0) = 1, |f | ≤ q; so f is continuous.
Now {f = 1} ∩H = ∅, so ker(f) ∩G = ∅. So pick M = ker(f).

In the case F = C, applied the theorem to X (viewed as a vector space over R). We get a
continuous R-linear f : X → R such that ker(f)∩G = ∅. Construct g(x) := f(x)− if(ix),
which is a complex linear functional. Then ker g = (ker f) ∩ i(ker f).

Corollary 9.1. Let X is a TVS, Y ⊆ X be a closed affine subspace, and G 6= 0 be an
open convex subset with Y ∩G 6= ∅. Then there is a closed affine hyperplane M ⊇ Y such
that M ∩G = ∅.

Proof. Suppose 0 ∈ Y . Consider the quotient map Q : X → X/Y . Then Q(G) is an
open, convex subset of X/Y with Q(G) 63 0. Find a hyperplane M ⊆ M/Y such that
M ∩Q(G) = ∅, and let M := Q−1[M ].

If 0 /∈ Y , do the same with a translation.

9.4 Half-spaces and separated sets

Definition 9.3. In a real TVS an open half-space is a is a set of the form {f > α} for
some f ∈ X∗ and α ∈ R. A closed half-space is a is a set of the form {f ≥ α} for some
f ∈ X∗ and α ∈ R.

Definition 9.4. A,B ⊆ X are separated of there exist closed half-spaces H,K such that
A ⊆ H, B ⊆ K, and H ∩K is an affine hyperplane. A and B are strictly separated if
there are open half-spaces H ⊇ A and K ⊇ B with H ∩K = ∅.

Theorem 9.4. Half-spaces and separated sets have the following properties:

1. The closure of an open half-space is a closed half-space.

2. The interior of a closed half-space is an open half-space.

3. If A,B are separated, then there exists an f ∈ X∗ and α ∈ R such that f |A ≤ α and
f |B ≥ α.

4. If A,B are strictly separated, then there exists an f ∈ X∗ and α ∈ R such that
f |A < α and f |B > α.
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Theorem 9.5. Let X be a real TVS, and let A,B be disjoint, convex sets with A open.
Then there exist an f ∈ X∗ and α ∈ R such that f |A < α, f |B ≥ α. If B is also open,
then A and B are strictly separated.

We will get this as a consequence of geometric Hahn-Banach next time.
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10 Separation Results and Weak Topologies

10.1 Separation results in topological vector spaces

Last time, we had the geometric Hahn-Banach theorem.

Theorem 10.1. Let X be a real TVS, and let G be a nonempty, open, convex subset with
x ∈ X \G. Then there exists

• an f ∈ X∗ and α ∈ R such that f(x) = α and f(G) ⊆ (−∞, α),

• a closed affine hyperplane M = {f = α} such that x ∈M and M ∩G = ∅.

This separates a point from a convex set. What about separating two convex sets?

Theorem 10.2. Let X be a real TVS, and let A,B be disjoint convex sets with A open.
Then there are an f ∈ X∗ and α ∈ R such that A ⊆ {f < α} and B ⊆ {f ≥ α}. If B is
also open, then B ⊆ {f > α} (strict separation).

Remark 10.1. This proof is difficult to imagine algebraically, but the main idea is only 1
step on top of the previous theorem.

Proof. Let G := A − B = {a − b : a ∈ A, b ∈ B}. This is convex, and we can also write
G =

⋃
b∈B(A− b), which shows that G is open. Since A ∩B = ∅, 0 /∈ G. By the previous

theorem, we find f ∈ X∗ such that f [G] ⊆ (−∞, 0). This set is f [G] = f(A) − f(B). So
α := sup f [A] ≤ inf[B]. Then A ⊆ {f ≤ α} and B ⊆ {f ≥ α}. Because A is open, we can
get A ⊆ {f < α}. If B is open, we can do the same.

10.2 Separation results in locally convex spaces

Theorem 10.3. Let X be a real LCS, and let A,B be disjoint, closed, convex subsets. If
B is compact, they are strictly separated.

Lemma 10.1. Let K ⊆ X be compact, and let V ⊇ K be open. Then there is an open
neighborhood U 3 0 such that K + U ⊆ V .

Proof. For each x ∈ K, there is a neighborhood Ux of 0 such that x + Ux ⊆ V . Because
addition is continuous in X, there is a smaller neighborhood Wx 3 0 such that Wx−Wx ⊆
U . Let x ∈ K, and suppose x ∈ xi +Wxi By compactness, there exist x1, . . . , xn ∈ K such
that K ⊆

⋃n
i=1(xi +Wxi). Now take W :=

⋂n
i=1Wxi .

Let x ∈ K, and say x ∈ xi+Wxi . Then x+W ⊆ xi+Wxi+W ⊆ xi+Wxi+Wxi ⊆ V .

Corollary 10.1. If X is an LCS, we may take U to be convex.
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Proof. B ⊆ X \A. The lemma gives a convex open U 3 0 such taht (B+U)∩A = ∅. The
previous version of the theorem gives f ∈ X∗ and α ∈ R such that f [B] + f [U ] ⊆ {f < α}
and A ⊆ {f ≥ α}. B is compact, so f [B] is compact; so there exists some ε > 0 such that
f [B] ≤ α− ε. Also, f [A] ≥ α.

Corollary 10.2. Let X be a real LCS, let A be closed and convex, and let x ∈ X \ A.
Then x,A are strictly separated.

Corollary 10.3. Let X be a real LCS, and let A ⊆ X. Then coA is the intersection of all
closed half-spaces containing A.

Corollary 10.4. Let X be a real LCS, and let A ⊆ X. Then spanA is the intersection of
all closed hyperplanes containing A.

Remark 10.2. These theorems all hold for complex vector spaces, as well. Here’s how
we get the complex vector space cases: If f : X → C. then let f = Re f . Then f =
g(x)− ig(ix). In this case, when we say that two sets are separated, we mean the real part
of f separates them.

10.3 Weak topologies

Example 10.1. Let (X,Σ, µ) be a finite measure space with no atoms (like the unit
interval). Let L0(µ) be the space of measurable functions X → C with the topology of
convergence in measure. So the topology is generated by sets of the form {f : µ{|f − g| >
ε} < ε} for each g ∈ L0.

There are no opne, convex sets besides the whole space. Assume U is convex with
U 3 0. Then U ⊇ {f : µ{|f | > ε} < ε}. Let n > 1/ε. If 1 ≤ i ≤ n, define gi = n(g1[ i−1

n
, i
n

]).

Then g = 1
n(g1, . . . , gn) ∈ U .

Example 10.2. Let C(Rn) with the seminorms pK(f) := ‖f |K‖ for all compact K ⊆ Rn.
Then if L ∈ C(RN )∗, then |L| ≤ αpK for some K. There exists a finite signed (or complex-
valued) Borel measure µ ∈M(K) such that L(f) =

∫
f dµ for all f ∈ C(Rn).

Let X be an LCS over F.

Definition 10.1. If x ∈ X and x∗ ∈ X∗, we can write 〈x, x∗〉 as x∗(x); we may also write
〈x∗, x〉.10

Definition 10.2. The weak topology on X is the topology generated by the seminorms
{|f | : f ∈ X∗}. The weak* topology on X∗ is the toplogy generated by {|x̂| : x ∈ X},
where x̂(f) := f(x).

10Conway’s textbook says you can write it either way around because of some category theoretic duality.
Professor Austin is pretty sure that it is because no one can remember which way it goes.
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This is not stronger than the original topology.

Remark 10.3. Some authors refer to σ(X,X∗) as the weak topology on X and σ(X∗, X)
as the weak* topology on X∗.

Theorem 10.4. Let X be a locally convex space.

1. (X,wk)∗ = X∗.

2. (X∗,wk*)∗ = X.

Lemma 10.2. Let X be any vector space, and let f, g1, . . . , gn be linear functionals such
that ker(f) ⊇

⋂n
i=1 ker gi. Then f ∈ span{g1, . . . , gn}.

Now let’s prove the theorem.

Proof. 1. We need to check that X∗ ⊆ (X,wk)∗. If f ∈ X∗, then |f | is a generating
seminorm for the weak topology on X, so f ∈ (X,wk)∗.

2. (⊆): This is from the definition of wk*.

(⊇): Suppose f : X∗ → F is continuous for the wk* topology. Then there exist scalars
α1, . . . , αn > 0 and x1, . . . , xn such that |f | ≤

∑
i αi|x̂i|. Then ker(f) ⊇

⋂n
i=1 ker x̂i.

The lemma then tells us that f =
∑n

i=1 βix̂i = (
∑n

i=1 βixi)
∧ ∈ X.

For clarity, we will use the terms open, closed, and continuous to refer to the original
toplogy on a space. We will use the terms weak-open, weak-closed, and weak-continuous
to refer to the weak/weak* topology on a space.
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11 Weak Closure of Convex Sets, Polars, and Alaoglu’s The-
orem

11.1 Weak closure of convex sets

Last time, we proved the following theorem:

Theorem 11.1. Let X be a locally convex space.

1. (X,wk)∗ = X∗.

2. (X∗,wk*)∗ = X.

Unlike with normed spaces, we can’t just keep constructing duals and duals of duals.
We can only construct (X∗,wk*) and its dual, (X,wk).

Theorem 11.2. Let A ⊆ X. Then coA = coA
wk

.

Proof. (⊆): The weak topology has fewer closed sets.
(⊇): Suppose x /∈ coA. Then there exist an f ∈ X∗ and α ∈ R such that Re f [coA] ≤

α < Re f(x). So coA ⊆ {Re f ≤ α}.

Corollary 11.1. If A is convex, A = A
wk

.

Remark 11.1. The weak topology is the weakest topology with all closed, convex sets (in
the original topology) still closed.

11.2 Polars and quotients

Definition 11.1. Let A ⊆ X. Its polar is Ao = {f ∈ X∗ : |f(x)| ≤ 1 ∀x ∈ A}.

Definition 11.2. Let B ⊆ X∗. Its pre-polar is oB := {x ∈ X : |f(x)| ≤ 1 ∀f ∈ B}.

Definition 11.3. If A ⊆ X, its bipolar is o(Ao).

Proposition 11.1. Let A ⊆ X.

1. Ao is convex and balanced.

2. If A1 ⊆ A, then Ao1 ⊇ Ao.

3. If α ∈ F \ {0}, then (αA)o = α−1Ao.

4. A ⊆o Ao.

5. Ao = (oAo)o.
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Remark 11.2. There is an analogous version of this proposition for pre-polars if we start
from B ⊆ X∗.

Theorem 11.3. Let A ⊆ X. Then oAo is the closed, convex, balanced hull of A (i.e. the
intersection of all closed, convex, balanced sets containing A).

Proof. (⊇): From the proposition, oAo is closed, convex, and balanced.
(⊆): Suppose there exists some convex, balanced, closed A1 ⊇ A and x ∈ X \ A1;

we need to show that x /∈ oAo. Then there exist some f ∈ X∗ and α ∈ F such that
Re f [A1] ≤ α < Re f(x). Since Re f [A1] 3 0, α ≥ 0; we can assume α > 0. Since we have
the balanced assumption, we can assume α = 1.

If f(x) ∈ R, then we are done, since x /∈ oAo. So our only worry is that f(x) /∈ R. Then
choose w := f(x)/|f(x)|. Now let g := wf . Then g(x) = Re f(x), and g[A1] = f [wA1] =
f [A1]. So we can use the argument for when f(x) ∈ R.

Definition 11.4. Let X be a locally convex space, and let M be a linear subspace. The
annihilator of M is M⊥ := {f ∈ X∗ : f |M = 0}.

Proposition 11.2. Let X be a vector space over F, and let M be a linear subspace. Let p
be a seminorm on X, and define

p(x+M) := inf{p(x+ y) : y ∈M}.

Then the function p is a seminorm on X/M . If X is an LCS and P is the collection of
continuous seminorms on X, then {p : p ∈ P} generates the quotient topology on X/M .
This is an LCS if M is closed.

Remark 11.3. This doesn’t work unless we take P to be the collection of all continuous
seminorms on X. What we need is p1 + p2 ≥ p1 + p2, so we want a generating family of
seminorms that is closed under addition (max is okay, too).

Theorem 11.4. Let Q : X → X/M be the quotient map. Define (X/m)∗ → M⊥ sending
f 7→ f ◦Q. This is an isomorphism of LCSs.

Proof. Onto: Let g ∈ M⊥. Then g = f ◦ Q for some linear f : X/M → F; we need
to show that f is continuous. We have that |g| is a continuous seminorm on X. Then
|g|(x+M) = |f |(x)|, so |f | is a continuous seminorm. So f is continuous.

To check that the topologies are the same, he have that {f ∈ (X/M)∗ : |f(x+M)| < ε}
corresponds to {g ∈ M⊥ : |g(x)| < ε}. These generate the respective topologies for the
domain and codomain.

Theorem 11.5. The map X∗ →M∗ sending f 7→ f |M quotients to X∗/M⊥ →M∗. This
is an isomorphism of LCSs.
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Remark 11.4. We want X∗/M⊥ to be Hausdorff, so we want M⊥ to be closed. But M⊥

is always closed, so this is okay.

Proof. Onto: If g ∈ M∗, then there is a continuous seminorm p on X such that g ≤ p.
Now apply Hahn-Banach to extend g to a continuous seminorm bounded by p.

11.3 Alaoglu’s theorem

Theorem 11.6. Let X be a normed space, and let B∗ = {f ∈ X∗; ‖f‖ ≤ 1} be the closed
unit ball in the dual space of X. Then B∗ is weak*-compact.

Proof. Consider the map ϕ : B∗ →
∏
x∈X,‖x‖≤1 D, where d = {z ∈ C : |z| ≤ 1}, given by

f 7→ 〈f(x)〉‖x‖≤1. We claim that ϕ is a homeomorphism to a closed subset of
∏
‖x‖≤1 D.

We claim that we have

ϕ[B∗] = {〈α(x)〉‖x‖≤1 ∈
∏

D : α(x+cy) = α(x)+cα(y) if ‖x‖, ‖y‖ ≤ 1, c ∈ F, ‖x+ cy‖ ≤ 1}.

For (⊇): If α is in the right hand side, define f(x) := ε−1α(εx) for all x ∈ X with ε < 1/‖x‖.
Then f ∈ B∗.

Closed: Suppose α /∈ ϕ[B∗]. Then there are x, y, c such that

|α(x+ cy)− α(x)− cα(y)| > ε > 0.

If |α′(x)−α(x)|, |α′(y)−α(y)|, |α′(x+cy)−α(x+cy)| < ε/3, then α′(x+cy) 6= α′(x)+cα′(y).
So ϕ[B∗] is closed.

Check that the topologies agree.

Theorem 11.7. For any normed space X , there exists a compact Hausdorff space Z such
that X embeds isometrically as a subspace of C(Z).

Proof. Let Z = B∗. For the mapping, take x 7→ x̂|B∗ .
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12 Reflexive Banach Spaces and Metrizability of the Unit
Ball in the Weak* Topology

Today’s lecture was given by a guest lecturer, Professor Dimitri Shlyakhtenko.

12.1 Reflexive spaces

Let X be a Banach space. For this lecture, we will denote the weak topology by σ(X,X∗)
and the weak*-topology by σ(X∗, X). Lst time we proved the following theorem:

Theorem 12.1 (Alaoglu). (X∗)1 is σ(X∗, X) compact.

Definition 12.1. X is reflexive if X = X∗∗.

Example 12.1. For 1 < p <∞, Lp and `p are reflexive.

Proposition 12.1. (X)1 ⊆ (X∗∗)1 is σ(X∗∗, X∗)-dense.

Remark 12.1. σ(X∗∗, X∗)|X = σ(X,X∗).

Proof. Take B to be the closure of (X)1 in the σ(X∗∗, X) topology. Then B ⊆ (X∗∗)1

as (X∗∗)1 is closed. If x∗∗ ∈ (X∗∗)1 \ B, then by Hahn-Banach (on (X∗∗, σ ∗ X∗∗, X∗)),
there exist an x∗ ∈ X∗ and α ∈ R such that Re 〈x, x∗〉 < α < α + ε < Re 〈x∗, x∗∗0 〉 for all
x ∈ (X)1. So there is an x∗ ∈ X∗ such that Re 〈x, x∗〉 < 1 < 1 + ε < Re 〈x∗, x∗∗0 〉 for all
x ∈ X0. Then | 〈x, x∗〉 | = 1 if ‖x‖ ≤ 1, so x∗ ∈ (X∗)1. We now get

1 + ε < Re 〈x∗, x∗∗0 〉 ≤ | 〈x,x∗∗0 〉 | ≤ ‖x∗∗0 ‖ ≤ 1.

This is a contradiction.

Theorem 12.2. Let X be a Banach space. The following are equivalent:

1. X is reflexive.

2. X∗ is reflexive.

3. σ(X∗, X) = σ(X∗, X∗∗).

4. (X)1 is compact in σ(X,X∗).

Proof. (1) =⇒ (3): This is because X = X∗∗.
(1) =⇒ (4): If X = X∗∗, Then (X)1 = (X∗∗)1. So σ(X,X∗) = σ(X∗∗, X∗), the weak*

topology on X∗∗. So (X)1 is compact by Alaoglu’s theorem.
(4) =⇒ (1): Note that σ(X∗∗, X∗)|X = σ(X,X∗). Thus, if (X)1 is σ(X,X∗) compact,

then (X)1 is compact in σ(X∗∗, X∗) as a subset of X∗∗. By the proposition, (X)1 is
σ(X∗, X∗∗)-dense in X∗∗. And compact implies closed.
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(3) =⇒ (2): By Alaoglu’s theorem, (X∗)1 is σ(X∗, X)-compact. By assumption,
(X∗)1 is σ(X∗, X∗∗)-compact. Now apply the argument of (4) =⇒ (1) to X∗. So X∗ is
reflexive.

(2) =⇒ (1): Observe that (X)1 is norm-closed in X∗∗ (because this is an isometric
inclusion). Therefore, (X)1 is σ(X∗∗, X∗∗∗)-closed. Assuming (2), (X)1 is σ(X∗∗, X∗)-
closed. Bt the proposition, (X)1 is σ(X∗∗, X∗)-dense in (X∗∗)1. So (X)1 = (X∗∗)1.

12.2 Additional properties of reflexive spaces

Corollary 12.1. Let X be a Banach space. If Y ⊆ X is a closed subspace, then Y is
reflexive.

Proof. We have (Y )1 = Y ∩ (X)1. So if X is reflexive, then (Y )1 is (X,X∗)-compact. But
then σ(X,X∗)|Y = σ(Y, Y ∗) (check this using Hahn-Banach). So Y is reflexive.

Example 12.2. Can you embed `∞ ⊆ `2 isometrically? No. Since `∞ is not reflexive.
What about embedding L2 into L∞?

Corollary 12.2. Let X be a Banach space. If X is reflexive, X is weakly sequentially
complete. That is, any σ(X,X∗)-Cauchy sequence has a σ(X,X∗)-limit.

Proof. Suppose {xn}n is weakly Cauchy: for all x ∈ X∗, {〈xn, x∗〉} is Cauchy. Then it is
bounded. The principle of uniform boundedness implies that there exists some M such that
| 〈xn, x∗〉 | ≤M for any x∗ ∈ (X∗)1. So ‖xn‖ ≤M for all n. Now by reflexivity, M(X)1 is
compact in σ(X,X∗). So there exists a limit point x ∈M(X)1 such that 〈xn, x∗〉 → 〈x, x∗〉
for all x∗ ∈ X∗. Then xn → x in the σ(X,X∗)-topology.

Example 12.3. Let X = C([0, 1]), and let

fn =

{
−nx+ 1 x ∈ [0, 1/n]

0 x ∈ (1/n, 1].

Then for any signed measure µ ∈ C([0, 1])∗, 〈fn, µ〉 =
∫
fn(t) dµ(t)→ µ({0}), but fn 6→ f

weakly. So be careful.

Definition 12.2. A subspace Y ⊆ X is called proximal if for all x0 ∈ X, there exists
some y0 ∈ Y such that ‖x0 − y0‖ = dist(Y, x0)

Corollary 12.3. Let X be a Banach space. If X is reflexive, then any subspace Y ⊆ X is
proximal.

Proof. The map x 7→ ‖x − x0‖ is σ(X,X∗)-semicontinous. Then Y ∩ {x : ‖x − x0‖ ≤
2 dist(x0, Y )} is a σ(X,X∗)-compact set (by reflexivity). Semicontinuous functions achieve
their minima.
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Proposition 12.2. If x∗ ∈ X∗, then kerx∗ is proximal if and only if there is an x ∈ (X)1

such that 〈x, x∗〉 = ‖x∗‖.

Example 12.4. Let L : [0, 1]→ C be
∫ 1/2

0 f dx−
∫ 1

1/2 f dx. The norm of L is never achieved

(you want a step function, but this is not continuous), so kerL is not proximal.

Theorem 12.3 (James, 60s). X is reflexive if and only if every closed hyperplane is
proximal.

12.3 Metrizability of the closed unit ball in the weak* topology

Theorem 12.4. Let X be a Banach space. (X∗)1 is σ(X∗, X)-metrizable if and only if X
is separable.

Proof. (⇐= ): Assume X is separable. Let {xn}n be a countable dense subset of X. Let
D = {z : |z| ≤ 1}, and let Y =

∏
ND. Then the map τ∗1 → X by τ(x∗) = {〈x∗, xn〉}n gives

a homeomorphism from ((X∗)1, σ(X∗, X))→ Y .
( =⇒ ): If (X∗)1 is σ(X∗, X)-metrizable, then there are open sets Un ⊆ (X∗)1 with

0 ∈ Un such that
⋂
n Un = {0}. By the definition of the weak* topology, there exist finites

subsets Fn of X such that {x∗ ∈ (X∗)1 : | 〈x∗, x〉 | < 1 ∀x ∈ Fn} ⊆ Un. Let F =
⋃
n Fn.

We claim that F is dense. Then F =⊥ (F⊥). So it is enough to prove that F⊥ = {0}.
If x∈F⊥ \ {0}, then for all x ∈ Fn,

0 =

∣∣∣∣〈 x∗

‖x∗‖
, x

〉∣∣∣∣ < 1 =⇒ x∗

‖x∗‖
∈ Un =⇒ x∗

‖x∗‖
= 0.

So F⊥ = {0}.
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13 The Krein-Milman Theorem and The Markov-Kakutani
Fixed Point Theorem

Today’s lecture was given by a guest lecturer, Professor Dimitri Shlyakhtenko.

13.1 The Krein-Milman theorem

Definition 13.1. Let K ⊆ X be convex. Then a is an extreme point of K if a ∈ K and
if whenever a = α+ (1− α)y for some α ∈ [0, 1] and x, y ∈ K, then α = 0 or α = 1.

So extreme points cannot be on the interior of a line segment in K. The set of extreme
points is denoted as ext(K).

Example 13.1. Suppose K = {f ∈ L1([0, 1]) : ‖f‖1 ≤ 1}. What are the extreme points

of K? If ‖f‖1 = 1, then
∫ 1

0 |f(t)| dt = 1. The primitive F (T ) =
∫ T

0 |f(t)| dt is continuous,

so there is a T such that
∫ T

0 |f(T )| dt = 1/2. Now define

h(t) =

{
2f(T ) t ≤ T
0 otherwise,

g(t) =

{
0 t ≤ T
2f(t) otherwise.

Then ‖h‖2 = ‖g‖2 = 1, and f = 1
2h+ 1

2g. So there are no extreme points.

Theorem 13.1 (Krein-Milman). Let X be an LCS, and let K be a nonempty, compact,
convex subset. Then K = co(extK). In particular, extK 6= ∅.

Corollary 13.1. If B ⊆ X is a nonempty, convex subset such that ext(B) 6= ∅, then no
LCS structure on X makes B compact.

Corollary 13.2. If X is a Banach space and ext(X)1 = ∅, then X 6= Y ∗ for any Y .

Example 13.2. This shows that L1 is not the dual of anything.

Proposition 13.1. Let K ⊆ X be convex. The following are equivalent:

1. a ∈ extK.

2. If a = 1
2(x1 + x2) with x1, x2 ∈ K, then x1 = x2.

3. If x1, . . . , xk ∈ K and a ∈ co{x1, . . . , xk}, then a = xj for some j.

4. K \ {a} is convex.

Here is the idea of the proof of the Krein-Milman theorem: Look for maximal (non-
trivial) relatively open convex subsets (and hope that these are the same as {K \ {a} : a ∈
extK}).
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Proof. We want to use Zorn’s lemma. Let U = {U ⊆ K : U rel. open, convex, U 6= ∅, U 6=
K}. This is nonempty and ordered by inclusion. Assume that U0 ⊆ U is a chain. Let
U0 =

⋃
U∈U0 U ; this is open (as a union of open sets), and it is convex.11 U0 is nontrivial,

as well: if U0 = K, then U0 is an open cover for K, which means that K ⊆ U for some
U ∈ U0, This is a contradiction.

By Zorn’s lemma there exists a maximal element U ∈ U . Let x ∈ L and λ ∈ [0, 1].
Define Tx,λ : K → K by Tx,λ(y) = λy + (1 − λ)x. This is continuous and affine (i.e.
Tx,λ(

∑
j αjyj) =

∑
j αjT (yj) if αj ≥ 0 and

∑
j αj = 1).

We claim that if λ < 1 and x ∈ U , then Tx,λ(U) ⊆ U . Thus, U ⊆ T−1
x,λ(U), which is

an open, convex set. If y ∈ U \ U , then Tx,λ(y) ∈ [x, y) ⊆ U . So if U ⊆ T−1
x,λ(U), then

T−1
x,λ(U) = K. Thus, Tx,λ(K) ⊆ U for all x ∈ U and λ ∈ [0, 1).

We claim that if V ⊆ K is open and convex, then V ∪ U = U or V ∪ U = K. This is
because V ∪U is open, and the conclusion above implies that V ∪U is convex. If V ∪U 6= K,
then V ∪ U ⊆ U by maximality.

We now claim that K \ U is one point. If a, b ∈ K \ U and a 6= b, then choose disjoint,
open, convex subsets Va, Vb ⊆ K with a ∈ Va, b ∈ Vb. Then Va ∪ U 6= U , so Va ∪ U = K.
However, this implies b ∈ Va ∩ Vb, which gives a contradiction.

We now claim that if V ⊆ X is open, convex, and extK ⊆ V , then K ⊆ V : Suppose
not, so there exists an open, convex V ⊆ X such that extK ⊆ V by V ∩K 6= K. Then
V ∩K ⊆ U , so there is a maximal U ∈ U such that V ∩K ⊆ U = K \ {a} and a ∈ ext(K).
Then a /∈ V , which is a contradiction.

To finish the proof: Let E = co(extK). If x∗ ∈ X∗, α ∈ R, and E ⊆ {x ∈ X :
Re 〈x, x∗〉 < α} = V , then K ⊆ V . Hahn-Banach says that E is the intersection of such
sets V . So E ⊇ K.

Here is another theorem. This is

Theorem 13.2. Let X be an LCS, and let X ⊆ K be compact, and convex. Assume that
F ⊆ K is such that K = co(F ). Then ext(K) ⊆ F .

13.2 The Markov-Kakutani fixed point theorem

Fixed point theorems allow us to show the existence of desired objects by expressing them
as a fixed point of some map(s).

Theorem 13.3 (Markov-Kakutani fixed point theorem). Let K ⊆ X be a nonempty,
compact, convex set. Let F be a family of affine maps K → K which is abelian (ST = TS
for all S, T ∈ F). Then there exists a fixed point x0 ∈ K such that T (x0) = x0 for all
T ∈ F .

11It also has a hilarious notation.
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Proof. Let T ∈ F . Define T (n) = 1
n

∑n−1
k=0 T

k. Then T (n) is a again an affine map taking

K → K. If S, T ∈ F , then S(n), T (m) commute for all n,m. Let K = {T (n)(K) : T ∈ F , n ≥
1}, which is a collection of compact, convex sets. If T1, . . . , Tp ∈ F and n1, . . . , np ≥ 1,
then

T
(n1)
1 ◦ · · · ◦ T (np)

p (K) ⊆
p⋂
j=1

T
(nj)
j (K).

These are arbitrary elements of K, then K has the finite intersection property. So there
exists an x0 ∈

⋂
K′∈KK

′.
We claim that x0 is the desired fixed point. Take t ∈ F , and let n ≥ 1. Then

x0 ∈ T (n)(K), so x0 = T (n)(x) for some x. In particular,

x0 =
1

n
x+ T (x) + · · ·+ Tn−1(x)).

Applying T , we get

T (x0) =
1

n
(T (x) + · · ·+ Tn−1(x) + Tn(x)).

Subtracting this, we get

T (x0)− x0 =
1

n
(Tn(x)− x) ∈ 1

n
(K −K),

where K − K is compact. This is true for any n. If U is an open neighborhood of 0,
then there exists some n such that 1

n(K − K) ⊆ U . Then T (x0) − x0 ∈ U for all open
neighborhoods U of 0, so T (x0) = x0.
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14 Adjoints

14.1 Adjoints of linear maps

If T : X → Y is a linear map, then f 7→ f ◦ T is a lienar operator on linear functionals. If
T is bounded, then f ◦ T is continuous, so this restricts to a linear map T ∗ : Y ∗ → X∗.

Definition 14.1. T ∗ is called the adjoint of T .

Proposition 14.1. If T is bounded, then ‖T ∗‖ ≤ ‖T‖.

Proof.

‖T ∗f‖ = sup{|T ∗f(x)| : ‖x‖X ≤ 1}}
= sup{|f(Tx)| : ‖x‖X ≤ 1}}
≤ ‖f‖‖T‖.

Proposition 14.2. Let X,Y be normed spaces, and let T : X → Y be linear. The following
are equivalent:

1. T is bounded.

2. f ◦ T ∈ X∗ for all f ∈ Y ∗.

3. T is continuous (X,wk)→ (Y,wk).

Proof. (1) =⇒ (2): This is because T is continuous.
(2) =⇒ (3): Consider

T−1

[
m⋂
i=1

{y : | 〈fi, y〉 | < εi}

]
=

n⋂
i=1

{x : | 〈fi, Tx〉 | < εi}

=

n⋂
i=1

{x : | 〈fi ◦ T, x〉 | < εi}

(3) =⇒ (1): We must show that T [BX ] ⊆ MBY for some M < ∞. Given f ∈ X∗,
consider

f [T [BX ]] = {f(Tx) : ‖x‖X ≤ 1}

We know that there is a weak neighborhood U 3 0X such that T [U ] ⊆ {y : |f(y)| < 1}.
The weak topology is weaker than the norm topology, so there exists some ε > 0 such that
T [BX ] ⊆ {y : |f(y)| < 1/ε}. So |f [T [BX ]]| ≤ 1/ε.

Proposition 14.3. Adjoints have the following properties:
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1. (αA+ βB)∗ = αA∗ + βB∗ for all A,B ∈ B(X,Y ).

2. If T ∈ B(X,Y ), then T ∗ is continuous from (Y ∗,wk*) to (X∗,wk*).

Remark 14.1. Riesz representation gives H∗ ∼= H via Lh := 〈·, h〉 7→ h, which is
conjugate-linear in h. So Lαh = α · Lh.

If H = Cn, then A is represntaed by [ai,j ] ∈ Mn,n(C). Then H∗ ∼= Cn, so A∗ is
represented by [aj,i]. But A∗ on H itself is represented by [aj,i].

Proposition 14.4. Let X,Y be Banach, and let A ∈ B(X,Y ).

1. A∗∗|X = A.

2. ‖A∗‖ = ‖A‖.

3. If A is invertible, so is A∗, and (A∗)−1 = (A−1)∗.

4. If B ∈ B(Y, Z), then (BA)∗ = A∗B∗.

Proof. For (2), we need to show that ‖A∗‖ ≥ ‖A‖. We know that ‖A∗∗‖ ≤ ‖A∗‖ ≤ ‖A‖.
Since A∗∗ is an extension of A to a larger space, ‖A∗∗‖ ≥ ‖A‖. So these are all equal.

Example 14.1. Let 1 < p, p′ <∞. Consider an operator Lp(µ)→ µp
′
(ν) given by

Tf(y) =

∫
f(x)K(x, y) dµ(x).

Then T ∗ : Lq
′
(ν)→ Lq(µ). For g ∈ Lq′(ν) and f ∈ Lp(µ),

〈T ∗g, f〉 = 〈g, Tf〉 =

∫∫
g(y)f(x)K(x, y) dµ(x) dν(y).

So

T ∗g(y) =

∫
(y)K(y, x) dν(y),

If we are in a Hilbert space, we may want to do 〈f, g〉 =
∫
fg dµ instead.

Proposition 14.5. Let A ∈ B(X,Y ). Then kerA∗ = (ranA)⊥, and kerA = ⊥(ranA∗).

Proof. We prove the second one; the first is similar. We have

x ∈ kerA ⇐⇒ Ax = 0

⇐⇒ 〈Ax, y∗〉 = 0 ∀y∗ ∈ Y ∗

⇐⇒ 〈x,A∗y∗〉 = 0 ∀y∗ ∈ Y ∗

⇐⇒ x ∈ ⊥(ranA∗).
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Proposition 14.6. Let A ∈ B(X,Y ). Then A is invertible if and only if A∗ is invertible.

Proof. ( ⇐= ): If kerA∗ = 0, then ranA is dense. If ranA∗ = X∗, then kerA = {0}. To
finish, we need to show that ranA is closed. This follows because if y = Ax, then

‖Ax‖ = sup{|f(Ax)| : ‖f‖Y ∗ ≤ 1}
= sup{|A∗f(x)| : ‖f‖Y ∗ ≤ 1}
= sup{|g(x)| : f ∈ A∗[BY ∗ ]}

For some c > 0,

≥ sup{|g(x)| : g ∈ cBX∗}
= c‖x‖X .

So ranA is closed.

14.2 The Banach-Stone theorem

Example 14.2. Let X,Y be compact, Hausdorff spaces, let τ : Y → X be a homeo-
morphism, and let α : Y → S1 be continuous. Define T : C(X) → C(Y ) by Tf(y) =
α(y) · f(τ(y)). Then T is an isometric isomorphism.

Theorem 14.1 (Banach-Stone). Any isometric isomorphism C(X) → C(Y ) is of this
form.

The key is to tell you what Banach space structure of C(X) to look at to recover what
X is.

We know that T ∗ is an isometric isomorphism from M(Y )→M(X).

Proposition 14.7. Let X be a compact, Hausdorff space.

1. Let X × S1 → M(X) send (x, α) 7→ x · δx. This is a homeomorphism from X × S1

to (ext(BM(X)),wk*).

2. Let X × {1} →M(X) send x 7→ δx. This is a homeomorphism X → extP (X).

Proof. We prove (1). We must show that µ ∈ BM(X) is extreme if and only if µ = αδx for
some α, x.
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15 The Banach-Stone Theorem and Compact Operators

15.1 The Banach-Stone theorem

Lemma 15.1. Let X be a compact, Hausdorff space. Let X × S1 →M(X) send (x, α) 7→
α · δx. This is a homeomorphism from X × S1 to (ext(BM(X)),wk*).

Proof. First, we show that αδx is an extreme point. If αδx = tµ(1 − t)ν, then the total
variation of µ or ν must be 1. So µ and ν are supported on {x}. Since α ∈ S1, we must
have µ = δx or ν = δx.

Let ϕ(x, α) = αδx. Then

{(x′, α′) : |α′f(x′)− αf(x)| < ε} = ϕ−1

{
µ : |

∫
f dµ− αf(x)| < ε

}
.

So this is continuous.
Injectivity: If |αδx| = |α′δx′ |, then x = x′ and α = α′.
Finally, assume that µ ∈ ext(BM(X). Then |µ| is a regular positive Borel measure. The

support K of |µ| is the set

K =
⋂

C⊆X closed
|µ|(X\C)=0

.

Then |µ|(X \K) (because the measure is regular).
We need to show that K is a singleton. Suppose not. Suppose that U ∩ V = ∅, where

µ has positive measure in each. Then there is an f : X → [0, 1] such that f |U = 0 and
f |V = 1. If µ is positive, write

µ =

∫
f dµ · fµ∫

f dµ
+

∫
(1− f) dµ

(1− f)µ∫
(1− f) dµ

.

These two measures are different, which contradicts the fact that µ is an extreme point.
For general µ, use µ = dµ

d|µ| |µ|.
This argument shows that K = {x}. This implies that µ = αδx for some α ∈ S1.

Theorem 15.1 (Banach-Stone). Any isometric isomorphism C(X)→ C(Y ) is of the form
Tf(y) = α(y)f(τ(y)), where τ : Y → X is a homeomorphism and α : Y → S1.

Proof. The adjoint T ∗ : M(Y )→M(X) resitrcts to a continuous map (extBM(Y ),wk*)→
(extBM(X),wk*). By the lemma, we have a continuous map Y × S1 → X × S1. We can
view Y = Y × {1} ⊆ Y × S1 and same for X. Then T ∗(δy) = α(y) · δτ(y) for some α, τ ,
both continuous. Moreover, τ must be invertible. Now we have

Tf(y) = 〈Tf, δy〉 = 〈f, T ∗δy〉 = α(y)f(τ(y)),

as desired.
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15.2 Compact operators

Let X,Y be Banach spaces.

Definition 15.1. A ∈ B(X,Y ) is compact if any of the following equivalent statements
hold:

• A(BX) is norm compact.

• A(BX) is totally bounded.

• For any bounded sequence (xn)n in X¡ (Txn)n has a norm-Cauchy subsequence.

Example 15.1. If dim ran(A) <∞, then A is compact.

Proposition 15.1. If dimX =∞, then IdX is not compact.

Proof. Assume (towards a contradiction that BX is compact and hence totally bounded.
So there existx1, . . . , xn ∈ X such that BX ⊆

⋃n
i=1B(Xi, 1/2). Then let y ∈ BX and

z ∈ span{x1, . . . , xn} be such that ‖y − z‖ < (1 = εdist(y,M) > 0. Then ‖y − z‖ <
(1+ε) dist(y−z,M). So 1 < (1+ε) dist( y−z

‖y−z‖M); i.e.dist( y−z
‖y−z‖M) > 1/(1+ε) > 1/2.

Theorem 15.2. Let X,Y be Banach spaces, and let A ∈ B(X,Y ). Then A is compact if
and only if A∗ is compact.

Proof. ( =⇒ ): Let (fn)n ∈ BY ∗ . Observe that

‖A∗f‖ = sup{|f(Ax) : x ∈ BX} = ‖f |A(BX)‖∞.

If f ∈ BY ∗ , then f is 1-Lipschitz and bounded by 1 on the compact space A(BX). So
{f |

A(BY )
: f ∈ BY ∗} is norm-compact. So there is a Cauchy subsequence in (A∗fn)n by

Arzelà-Ascoli.
(⇐= ): A∗∗|X = A.

Definition 15.2. Denote B0(X,Y ) as the collection of compact operators X → Y and
B00(X,Y ) as the collection of finite-rank operators X → Y .

Proposition 15.2. Let X,Y be Banach spaces.

1. B0 is a closed subspaces of B(X,Y ).

2. Suppose A : X → Y and B : Y → Z are bounded. If either A or B is compact, then
BA is compact.
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Proof. Suppose A ∈ B0(X,Y ); we want to show that A is compact. Consider A(BX) ⊆
Bε(C(BX)). For every ε > 0, there is a C ∈ B0(X,Y ) such that ‖A−C‖op < ε. So we can
cover A(BX) with finitely many balls of radius 2ε.

Assume A is compact, then A(BX) is totally bounded, and B(A(BX)) ⊆ B(A(BX)).

Corollary 15.1. B0(X) is an ideal in B(X). So B0(X) is an algebra.

Example 15.2. Let (X,Σ, µ) be a measure space, an dlet k ∈ L2(X × X,µ × µ). Then
define the kernel operator

Kf(y) =

∫
k(x, y)f(x) dµ(x).

Then K ∈ B(L2(µ), L2(µ)), and ‖K‖op ≤ ‖k‖L2(µ×µ).
K is comapct because for all ε > 0, there exist ϕ1, . . . , ϕn ∈ L2(µ) and ψ1, . . . , ψn ∈

L2(µ) such that ∥∥∥∥∥k(x, y)−
n∑
i=1

ϕi(x), ψi(y)

∥∥∥∥∥
L2

< ε.

So a finite rank approximation gives us that K is compact.

It is not always true that we can approximate by finite rank operators, but the coun-
terexamples tend to be complicated.

Theorem 15.3. Let X be a compact Hausdorff space. Then the space B00(C(X)) is dense
in B0(C(X)).

Proof. Assume A(BC(X)) is totally bounded. Pick ε > 0, and let U1, . . . , Un be an cover X

with xi ∈ Ui. For any f ∈ BC(X) and x ∈ Ui, we have |Af(x)−Af(xi)| < ε. There exists a
partition of unity: ϕ1, . . . , ϕn with 0 ≤ ϕo ≤ 1 such that ϕi|Uc

i
= 0 ad

∑n
i=1 ϕi = 1. Define

Aεf(x) :=
n∑
i=1

Af(xi) · ϕi(x).

This is finite rank because it takes values in the span of the ϕi. We then have

|Af(x)−Aεf(x)| ≤
n∑
i=1

|Af(x)−Af(xi)|ϕi(x) < ε.

52



16 Adjoints and Hermitian Operators on Hilbert Spaces

Today’s lecture was given by a guest lecturer, Professor Sorin Popa.

16.1 Sesquilinear forms and adjoints

If T ∈ B(X,Y ), we have the adjoint operator T ∗ ∈ B(Y ∗, X∗). If H,K are Hilbert spaces,
then H∗ ∼= H, the conjugate of H (i.e. H itself). So if T ∈ B(H,K), we get T ∗ ∈ B(K,H).

Definition 16.1. A sesquilinear form is a function u : H × K → C which is linear
in the first variable, antilinear in the second variable, and bounded (as a bilinear map):
|u(ξ, η)| ≤ C‖ξ‖H‖η‖K for all ξ ∈ H and η ∈ K.

Example 16.1. Let A ∈ B(H,K) and B ∈ B(K,H). Then uA(ξ, eta) = 〈Aξ, η〉K and
uB(ξ, η) = 〈ξ,Bη〉H are sesquilinear.

Theorem 16.1. Let H,K be Hilbert spaces. If u : H×K → C is sesquilinear and bounded
by C, then there exist unique A ∈ B(H,K) such that u = uA = uB with ‖A‖, ‖B‖ ≤ K.

Remark 16.1. In fact, ‖u‖ = ‖A‖ = ‖B‖.

Proof. For each ξ ∈ H, let Lξ : K → C with Lξ(η) = u(ξ, η). This is linear, and |Lξ(η)| ≤
C‖ξ‖‖η‖ =: Cξ‖η‖ for all η, so Lξ ∈ K∗. By Riesz representation, there is an f ∈ K
with ‖f‖ ≤ C‖ξ‖ such that Lξ(η) = 〈η, f〉. Thus, A : H → K defined by A(ξ) = f is
linear: A(α1ξ1 +α2ξ2) = α1A(ξ1) +α2A(ξ2) by the uniqueness in the Riesz representation
theorem. We also have ‖A(ξ)‖ ≤ C‖ξ‖, so A is bounded.

Definition 16.2. If A ∈ B(H,K), the unique B ∈ B(K,H) that satisfies uA(ξ, η) =
〈Aξ, η〉K = uB(ξ, η) = 〈ξ,Bη〉H is called the adjoint of A (denoted A∗).

Proposition 16.1. u ∈ B(H,K) is an isomorphism of Hilbert spaces if and only if u is
invertible and u−1 = u∗.

Proof. We have that
‖uξ‖2 = 〈uξ, uξ〉 = 〈u∗uξ, ξ〉 = 〈ξ, ξ〉

for all ξ ∈ H if and only if u∗u = 1. Since u is invertible, u∗ = u−1.

Proposition 16.2. Let A,B ∈ B(H,K), and let C ∈ B(K,K ′).

1. (αA+ βB)∗ = αA∗ + βB∗.

2. (CA)∗ = A∗C∗.

3. If H = K (so A ∈ B(H)), then (A∗)∗ = A.

4. If A is invertible, then A∗ is invertible and (A∗)−1 = (A−1)∗.
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Proposition 16.3. If A ∈ B(H), ‖A∗‖ = ‖A‖ = ‖A∗A‖1/2.

Remark 16.2. The second equality is something you don’t get in Banach spaces.

Proof.

‖A‖2 = sup
ξ∈(H)1

〈Aξ,Aξ〉 = sup
ξ∈(H)1

〈A∗Aξ, ξ〉

≤ sup
ξ∈(H)1

〈A∗Aξ, ξ〉 ≤ sup
ξ∈(H)1

‖A∗Aξ‖‖ξ‖

= ‖A∗A‖ ≤ ‖A∗‖‖A‖.

So we get that ‖A‖ ≤ ‖A∗‖. In particular, this holds for ‖A∗‖, so we get ‖A∗‖ ≤ ‖A‖.
Then all inequalities are equalities, so ‖A∗‖ = ‖A‖ = ‖A∗A‖1/2.

Example 16.2. If Mϕ ∈ B(L2(X,µ)) with ϕ ∈ L∞(X,µ), is multiplication by ϕ, then
(Mϕ)∗ = Mϕ.

Example 16.3. The right shift S : `2(N)→ `2(N) given by S(α1, α2, . . . ) = (0, α1, α2, . . . )
is isometric. Then S∗(α1, α2, . . . ) = (α2, α3, . . . ).

16.2 Hermitian operators

Definition 16.3. A ∈ B(H) is Hermitian (or self adjoint) if A = A∗.

Proposition 16.4. A is Hermitian if and only if 〈Aξ, ξ〉 ∈ R for all ξ ∈ H.

Proof. ( =⇒ ): We have
〈Aξ, ξ〉 = 〈ξ, Aξ〉 = 〈Aξ, ξ〉,

so 〈Aξ, ξ〉 ∈ R.
( ⇐= ): We would like to prove that if 〈Aξ, ξ〉 = 〈ξ, Aξ〉 for all ξ ∈ H, then 〈Aξ, η〉 =

〈ξ, Aη〉 for all ξ, η ∈ H. We use a polarization trick: check that

〈Aξ, η〉 =
1

4

3∑
i=0

ik
〈
A(ξ + ikη), ξ + ikη

〉
,

〈ξ, A, η〉 =
1

4

3∑
i=0

ik
〈
ξ + ikη,A(ξ + ikη)

〉
.

The right hand sides are equal, so the left hand sides are, as well.

Proposition 16.5. Let A ∈ B(H).

1. ‖A‖ = supξ,η∈(H)1 | 〈Aξ, η〉 |.
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2. If A = A∗, then ‖A‖ = supξ∈(H)1 | 〈Aξ, ξ〉 |.

Proof. For (1), we have ≥. For ≤, take η = Aξ
‖Aξ‖ for ξ with Aξ 6= 0.

For (2), we use

〈A(ξ ± η), ξ ± η〉 = 〈Aξ, ξ〉 ± 〈Aξ, η〉 ± 〈Aη, ξ〉+ 〈Aη, η〉
= 〈Aξ, ξ〉 ± 〈Aξ, η〉 ± 〈Aξ, η〉+ 〈Aη, η〉
= 〈Aξ, ξ〉 ± 2 Re 〈Aξ, η〉+ 〈Aη, η〉

By subtracting one from the other, we get

4 Re 〈Aξ, η〉 = 〈A(ξ + η), ξ + η〉 − 〈A(ξ − η), ξ − eta〉

≤

(
sup

ξ∈(H)1

| 〈Aξ, ξ〉 |

)
(‖ξ + η‖2 + ‖η − η‖2)

= 2

(
sup

ξ∈(H)1

| 〈Aξ, ξ〉 |

)
(‖ξ‖2 + ‖η‖2)

≤ 4 sup
ξ∈(H)1

| 〈Aξ, ξ〉 |.

By part 1, we get ‖A‖ ≤ supξ∈(H)1 | 〈Aξ, ξ〉 |.

Corollary 16.1. If 〈Aξ, ξ〉 = 0 for all ξ ∈ H, then A = 0.

Proof. For any A ∈ B(H), we can decompose A as two self-adjoint operators:

A =
A+A∗

2
+
A−A∗

2i
.

If 〈Aξ, ξ〉 = 0, then this is true for each of these two parts. So each of these parts has norm
equal to 0 by the previous proposition.
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17 Projections and Idempotents in Hilbert Spaces

17.1 Projections and idempotents

Let H be a Hilbert space over F.

Definition 17.1. An operator E ∈ B(H) is idempotent if E2 = E. E is a projection
if E2 = E and kerE = (ranE)⊥.

Proposition 17.1. Let E ∈ H.

1. E is idempotent if and only if 1− E is idempotent.

2. ranE = ker(1− E), kerE = ran(1− E), and these are closed subspaces of H.

3. kerE ∩ ranE = {0}, and kerE + ranE = H.

Proof. 1. (1− E)2 = 1− 2E + E2.

2.

h ∈ ranE ⇐⇒ hEk for some k

⇐⇒ Eh = E2k = Ek = h

⇐⇒ (1− E)h = 0.

3. h = Eh+ (1− E)h.

Remark 17.1. This also holds for Banach spaces, but we will not use it in that generality.

Proposition 17.2. Let P be a nonzero idempotent in B(H). The following are equivalent:

1. P is a projection.

2. P is the projection onto ranP .

3. ‖P‖ = 1.

4. P = P ∗.

5. P is normal.

6. 〈Ph, h〉 ≥ 0 for all h (nonnegativity).
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Proof. (1) =⇒ (2): Let M = ranP , which is closed. Then the projection PMh is
characterized by PMh − h ⊥ M ; we show that P has this property. For any h ∈ H,
h− Ph = (1− P )h ∈ ran(1− P ) = kerP , and ranP ⊆ (kerP )⊥. So h− Ph ⊥M .

(2) =⇒ (3): Write h1 = Ph, so h = h1 + (h− h1). Then ‖h1‖ ≤ ‖h‖ if h ∈M .
(3) =⇒ (1): We want to show that kerP = (ranP )⊥. We will show that (kerP )⊥ =

ranP . Assume h ⊥ kerP ; we will deduce that h ∈ ranP . We get

0 = 〈h, h− Ph〉 =⇒ ‖h‖2 = 〈h, Ph〉 =⇒ ‖h‖2 ≤ ‖h‖‖Ph‖ ≤ ‖P‖‖h‖2 = ‖h‖2,

so all these are equal. Then

‖h− Ph‖2 = ‖h‖2 + ‖Ph‖2 − 2 Re 〈h, Ph〉 = 0,

so h ∈ ranP .
Suppose h ∈ ranP . Then h = h1 = h2, where h1 ∈ (kerP )⊥, and h2 ∈ ranP . and is

orthogonal to ranP∩(kerP )⊥. This means h2 ∈ ranP ∩ kerP = {0}. so h = h1.
(2) =⇒ (4): Suppose P = PM . Then h = h1 + h2 and k = k1 + k2, where h1, k1 ∈M

and h2, k2 ⊥M . Then

〈Ph, k〉 = 〈h1, k1 + k2〉 = 〈h1, k1〉 = 〈h, Pk〉 .

(4) =⇒ (5): if P = P ∗, then P commutes with P ∗.
(5) =⇒ (1): If PP ∗ = P ∗P , then kerPP ∗ = kerP ∗P . If PP ∗h = 0, then

〈PP ∗h, h〉 = 〈P ∗h, P ∗h〉 = ‖P ∗h‖2,

so multiplying by an adjoint does not change the kernel. So ker(PP ∗) = ker(P ∗) =
(ranP )⊥. On the other hand, the same argument gives kerP ∗P = kerP .

(6) =⇒ (1): Suppose (1) does not hold, so there are an h = Ph and k ∈ kerP such
that 〈h, k〉 6= 0. Then

〈P (αh+ βk), αh+ βk〉 = 〈αh, αh+ βk〉 = ‖αh‖2 + αβ 〈h, k〉 ,

where 〈h, k〉 is not necessarily ≥ 0.

17.2 Invariant and reducible subspaces

If P is a projection, then the map h 7→ (Ph, h − P − h) is a Hilbert space isomorphism
H → ranP⊕kerP . So if we have an operator on H, we can think of it as an operator acting
on this direct sum. More generally, if we have a closed subspace M , then H ∼= M ⊕M⊥.
If A ∈ B(H), we identify it with[

X Y
W Z

]
, Ah =

[
X Y
W Z

] [
h1

h2

]
,

where X ∈ B(M), Z ∈ B(M⊥), Y ∈ B(M⊥,M), and W ∈ B(M,M⊥). This gets us
partway to diagonalization if we can show that W,Y = 0.
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Definition 17.2. A subspace M ≤ H is invariant for A ∈ B(H) if AM ⊆M . M ≤ H is
reducing for A ∈ B(H) if AM ⊆M and AM⊥ ⊆M⊥.

Here’s how we find X,Y, Z,W :

A(h1+h2) = PA(h1+h2)+(1−P )A(h1+h2) = PAPh+PA(1−P )h+(1−P )APh+(1−P )A(1−P )h.

In other words, [
X Y
W Z

]
=

[
PA|M PA|M⊥

(1− P )A|M (1− P )A|M⊥

]
.

Proposition 17.3. 1. M is invariant for A ⇐⇒ PAP = AP ⇐⇒ W = 0.

2. M is reducing for A ⇐⇒ PA = AP ⇐⇒ W = 0, Y = 0.

Proof. 1. If PAP = AP , then W = (1− PA|M = (1− P )AP |M = 0.

If M is invariant, then [
X Y
0 Z

] [
h1

0

]
=

[
Xh1

0

]
.

2. If PA = AP , then PAP = AP , so M is invariant. On the other hand PA = PAP ,
so PA(1− P ) = 0. So M⊥ is invariant, making M reducing.

Idea on the route to the spectral theorem for self-adjoint operators: Break A into[
X 0
0 Y

]
such that X,Y are both “simpler” than A was originally. Keep doing this to “diagonalize”
A.
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18 Approximation and Eigenvalues of Compact Operators

18.1 Approximation of compact operators by finite rank operators

Last time, we were talking about invariant and reducing subspaces of a Hilbert space M .
Here, we have H = M ⊕M⊥ and A ∈ B(H) is

A =

[
X Y
W Z

]
.

We saw that M is reducing ⇐⇒ PMA = APM ⇐⇒ Y = 0,W = 0.

Proposition 18.1. M is reducing if and only if M is invariant under both A and A∗.

Proof. This is because

A∗ =

[
X∗ W ∗

Y ∗ Z∗

]
.

Then M is invariant for A∗ iff Y = 0 iff M⊥ is invariant for A.

Recall that B0(H) is the space of compact operators, and B00 is the space of finite rank
operators.

Theorem 18.1. B00(H) is dense in B0(H).

Proof. If T ∈ B0(H), then T (BH) is a compact metric space. So it is countable. Then
ranT ⊆ spanT (BH) ⊆ spanD, where D is any countable dense set in T (BH). So there
is an orthonormal 〈en〉n such that ranT ⊆ span{en}. Let Pm be the projection onto
span{e1, . . . , em}. We will show that ‖PmT − T‖op → 0.

Observe that for any h ∈ BH , we have Th =
∑

n 〈Th, ej〉 eh. Then PnTh → Th in the
norm of H. Let ε > 0. We can choose h1, . . . , jk ∈ BH such that for all h ∈ BH , there
is some i such that ‖Th − Thi‖ < ε. Choose m such that ‖PmThi − Thi‖ < ε for all
i = 1, . . . , k. Then

‖PmTh− Th‖ < ‖Pm(Th− Thi)‖+ ‖PmThi − Thi‖+ ‖Th− i− Th‖ < 3ε.

So ‖PmT − T‖op < 3ε.

Remark 18.1. If you try to do this with general Banach spaces, it fails. The issue is that
you cannot guarantee that ‖Pm‖ = 1 for all m. So you lose control of the bound at the
end.

Suppose 〈en〉n is an orthonormal basis for H. Define an operator by Ten = αnen for
αn ∈ F.

Lemma 18.1. T ∈ B0(H) if and only if |αn| → 0.
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Proof. ( =⇒ ): Assume there exist some ε > 0 and n1 < n2 < · · · such that|αni > ε. Then
{Ten1 , T en2 , · · · = {αn1en, αn2en2 , . . . } ⊆ T (BH). These all are distance ≥ ε to each other
and are orthonormal to each other.

(⇐= ): Let

Tme− n =

{
αnen n ≤ m
0 n > m

= PmT.

Then we have the diagonal matrix:

T − PmT =



0
. . .

0
αm+1

αm+2

. . .


.

So we can see that ‖T − PmT‖op ≤ maxn>m |αn|.

Example 18.1. Let k ∈ L2(µ× µ) and let

Kf(x) =

∫
k(x, y)f(y) dµ(y).

For example, if h ∈ L2(−π, π), we have

Kf(x) =
1√
2π

∫ π

−π
h(x− y)f(y) dy.

Let the Fourier basis be en(x) = 1√
2π
e−inx for all n ∈ Z. Then we can check

Ken(x) = ĥ(x) · en(x).

18.2 Eigenvalues of compact operators

Definition 18.1. If A ∈ B(H), an eigenvalue of A is a λ ∈ F such that ker(A−λ) 6= {0}.
The λ-eigenspace is the set of eigenvectors corresponding to the eigenvalue λ. We
denote the point spectrum σp(A) to be the set of eigenvalues of A.

Remark 18.2. This is a special subset of the spectrum, which is the set of λ ∈ F such
that A− λ1 is not invertible.
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Example 18.2. In C4, the matrix 
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0


has no nonzero eigenvalues but is nonzero. This kind of phenomenon becomes much richer
in infinite dimensions, and we can have compact operators with no nonzero eigenvalues but
with interesting properties.

Example 18.3. On L2([0, 1]), the Volterra operator is

V f(x) =

∫ x

0
f(y) dy =

∫ 1

0
1{y≤x}f(y) dy.

Proposition 18.2. The Volterra operator is compact but has no eigenvalues.

Proof. Suppose V f = λf with f 6= 0. If λ = 0, then the integral of f only any interval is
0, so f = 0. Suppose λ 6= 0. Then we get f(x) = λ−1

∫ x
0 f , so f is absolutely continuous,

f ′ exists, and f ′(x) = λ−1f(x) a.e. Since we must have f is continuous, this gives f ′(x) =
λ−1f(x) everywhere. The solution to this differential equation is f(x) = Cecx. But we
must have C = 0 because the original equation implies f(0) = 0. So f = 0.

Proposition 18.3. Let T ∈ B0(H) and λ ∈ σp(T ) \ {0}. Then dim ker(T − λ1) <∞.

Proof. Call M = ker(T − λ1). Then Tx = λx for all x ∈ M . We have T (BH) ⊇ T (BH ∩
M) = λBM , which is not totally bounded unless dimM <∞.

Proposition 18.4. Let T ∈ B0(H), and let λ 6= 0. Assume that

inf{‖(T − λ)h‖ : ‖h‖ = 1} = 0.

Then λ ∈ σp(T ).

Remark 18.3. This says that “approximate eigenvalues” are actually eigenvalues for com-
pact operators.

Proof. Choose h1, h2, . . . with ‖hn‖ = 1 such that Thn − λhh = (T − λ)hn → 0 in ‖ · ‖.
Choose n1 < n2 < · · · susch that Thn → g. Then λhn = Thn − (Thn − λhn) → g, so
hn → λ−1g. So Thn → λ−1Tg = g.

Corollary 18.1. Let T ∈ B0(H), and suppose that λ /∈ σp(T )∩{0} and λ /∈ σp(T ∗). Then
T − λ is invertible.

Remark 18.4. In fact, we will see that λ /∈ σp(T ∗) is implied by λ /∈ σp(T ) ∩ {0}.

61



Proof. We know that ker(T − λ) = {0}. On the other hand,

(ran(T − λ))⊥ = ker(T ∗ − λ) = {0}.

To finish, we will show that ran(T − λ) is closed. (T − λ)h = 0 has no nonzero solutions,
so there is a c > 0 such that ‖(T − λ)h‖ ≥ c‖h‖ for all h. So (T − λ) is an open mapping,
which forces ran(T − λ) to be closed.

18.3 The spectral theorem for self-adjoint operators

We will prove the following theorem.

Theorem 18.2 (Spectral theorem for self-adjoint operators). Suppose T is comapct and
self adjoint. Then

1. σp(T ) is countable.

2. If σp(T ) \ {0} = {λ1, λ2, . . . } and Pn is the projection onto ker(T − λn), then

• PnPm = PmPn = 0 for all m 6= n (i.e. ker(T − λn) ⊥ ker(T − λm)).

• λn ∈ R for all n.

• T =
∑∞

n=1 λnPn in ‖ · ‖op.

This is an infinite-dimensional diagonalization of T .
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19 Spectral Theorems for Compact Operators

19.1 Spectral theorem for compact, self-adjoint operators

Last time, we proved the following propositions about eigenvalues of compact operators.

Proposition 19.1. Let T ∈ B0(H) and λ ∈ σp(T ) \ {0}. Then dim ker(T − λ1) <∞.

Proposition 19.2. Let T ∈ B0(H), and let λ 6= 0. Assume that

inf{‖(T − λ)h‖ : ‖h‖ = 1} = 0.

Then λ ∈ σp(T ).

Theorem 19.1 (Spectral theorem12 for self-adjoint operators). Suppose T is comapct and
self adjoint. Then

1. σp(T ) is countable.

2. If σp(T ) \ {0} = {λ1, λ2, . . . } and Pn is the projection onto ker(T − λn), then

• PnPm = PmPn = 0 for all m 6= n (i.e. ker(T − λn) ⊥ ker(T − λm)).

• λn ∈ R for all n.

• T =
∑∞

n=1 λnPn in ‖ · ‖op.

The last sum should be thought of as an infinite block diagonal matrix where the blocks
are λiIranPi .

Lemma 19.1. If T is normal, ker(T − λ) = ker(T ∗ − λ) is a reducing subspace.

Proof. If x ∈ ker(T − λ), then (T − λ)Tx = T (T − λx) = 0. Then Tx ∈ ker(T − λ), and
same for T ∗.

Lemma 19.2. Let T be self-adjoint. If λ, µ are eigenvalues with λ 6= µ, then ker(T −λ) ⊥
ker(T − µ).

Proof. Let x ∈ ker(T − λ) and y ∈ ker(T − µ). Then

λ 〈x, µ〉 = 〈λx, y〉 = 〈Tx, y〉 = 〈x, Ty〉 = 〈x, µy〉 = µ 〈x, y〉

So 〈x, y〉 = 0.

Lemma 19.3. If T is self-adjoint, then σp(T ) ⊆ R.

12Tim learned about the spectral theorem at the same time when he was preparing for his driving test.
This was a dangerous idea.
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Proof. If x ∈ ker(T − λ) \ {0}, then

λ 〈x, x〉 = 〈λx, x〉 = 〈Tx, x〉 = 〈x, Tx〉 = λ 〈x, x〉 ,

so λ = λ.

Lemma 19.4. Let T be compact and self-adjoint. Then at least one of ‖T‖op,−‖T‖op ∈
σp(T ).

Proof. Recall that
‖T‖ = sup{| 〈Tx, x〉 | : ‖x‖ = 1}.

Since 〈Tx, x〉 = 〈x, Tx〉 = 〈Tx, x〉, we will assume that this equals sup{〈Tx, x〉 : ‖x‖ = 1}
(the other case is the negative case). Suppose ‖xn‖ = 1 and 〈Txn, xn〉 → 1. Then

‖Txn − λxn‖2 = 〈Txn, Txn〉︸ ︷︷ ︸
≤λ2

− 2λ 〈Txn, x−N〉︸ ︷︷ ︸
→−2λ2

+λ2‖xn‖2.

By the lemma, λ ∈ σp(X).

Proof. If ‖T‖ ∈ σp(T ), let λ1 = ‖T‖, and let P1 be the projection onto ker(T − λ1) (this is
reducing). Now consider T1 = T |ker(T−λ1)⊥ . This is compact, self-adjoint, and ‖T1‖ ≤ ‖T‖.
If −‖T‖ ∈ σp(T1), let λ2 = −‖T‖ and P2 = Pker(T−λ2). Then let T2 := T (1−P1)(1−P2) =
T |(ker(T−λ1)+ker(T−λ2))|perp. Now ‖T2‖ < ‖T‖.

Continue to produce a sequence of eigenvalues ‖lambda3, λ4, λ5, . . . such that |λ1| ≥
|λ2| ≥ |λ3| ≥ |λ4| ≥ · · · and a sequence of projections Pi onto ker(T −λi). In this sequence
of eigenvalues, there are no consecutive equalities. Also, we have |λi+1| = ‖Ti+1‖ and
Ti+1 := T (1− P1) · · · (1− Pi).

Next, we show that |λi| → 0. If not, let xi ∈ ker(T − λi) be such that ‖xI‖ = 1. Then
Txi = λixi is a sequence of orthogonal vectors not going to 0, contradicting compactness.

Now consider S =
∑∞

i=1 λiPi. We want to show that S = T . Call SN =
∑N

i=1 λiPi. We
have by Parseval’s theorem that

‖(S − SN )x‖2 =

∥∥∥∥∥
∞∑

i=N+1

λiPix

∥∥∥∥∥
2

=
∞∑

i=N+1

|λ|2‖Pix‖2 ≤ |λN+1|
∞∑

i=N+1

‖Pix‖2 → 0.

Now

(T − SN )x = (T − SN )x1 + (T − SN )x2

where x1 = (P1 + · · ·+ PN )x, x2 = x− x1 ⊥ span(ker(T − λ1), . . . , ker(T − λN ). Now split
x1 = P1x1 + · · ·+ PNx1 = x1,1 + · · ·+ x1,N to get

=

N∑
i=1

(T − SN )x1,i + (T − Sn)X2
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= Tx2.

And we also have

‖Tx2‖ = ‖TN+1x2‖ ≤ |λN+1|‖x2‖ ≤ |λN+1|‖x‖ → 0.

Finally, we have enumerated all the eigenvalues, so there are only countably many.

The proof gives us the following facts, as well.

Corollary 19.1. Let T be compact and self-adjoint.

1. The Pn each have finite rank.

2. |λn| → 0.

3. kerT = (
∑

n ranPn)⊥

Here is a formulation which makes this look even more like diagonalization:

Corollary 19.2. There exist an orthonormal basis (en)n for (kerT )⊥ and (µn)n in R with
µn → 0 such that

Tx =
∑
n

µn 〈x, en〉 en, ∀x ∈ H.

Proof. Let T =
∑

m λmPm. Convert to the above form. Each λm appears dimPm-many
times as a µm.

19.2 Spectral theorem for compact, normal operators

If N is normal, then N = S + iT , where S, T are self-adjoint and ST = TS. T and S are
linear combinations of N and N∗, so if N is comapct, so are S, T .

Proposition 19.3. Suppose S =
∑∞

i=1 αiPi with αi ∈ F distinct (and nonzero) and Pi
orthogonal projections, If ST = TS, then PiTPi = TPi for all i. If S is self-adjoint, then
PiT = TPi for all i.

Proof. Check that ker(S − αi) = ranPi. If Sx = αix, then STx = TSx = T (αix) = αiTx.
This shows that PiTPi = TPi.

If S = S∗, then Pi reduces T for all i:

ST ∗ = S∗T ∗ = (TS)∗ = (ST )∗ = T ∗S∗ = T ∗S.

So PiT = TPi.

Theorem 19.2 (Spectral theorem for compact, normal operators). Let N be comapct and
normal. Then
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1. σp(T ) is countable.

2. If σp(T ) \ {0} = {λ1, λ2, . . . } and Pn is the projection onto ker(T − λn), then

• PnPm = PmPn = 0 for all m 6= n (i.e. ker(N − λn) ⊥ ker(N − λm)).

• N =
∑∞

n=1 λnPn in ‖ · ‖op.

Proof. Let N = S+ iT with S, T self-adjoint, and write S =
∑

k≥1 λ
S
kP

S
k . Now PSk reduces

T for all k. Now choose a further decomposition PSk = Qk,1 + · · · + Qk,mk
such that

TPSk = TQk,1 + · · · + TQk,mk
= βTk,1Qk,1 + · · · + βTk,mk

Qk,mk
. Now S =

∑
k

∑mk
i=1 λ

S
kQk,i,

and T =
∑

k

∑mk
i=1 βk,1Qk,i. So

S + iT =
∑
k

mk∑
i=1

(λSk + iβk,i)Qk,i.

Check that βk,i → 0 and that Qk,iQ`,j = Q`,jQk,i = 0.

For non-compact operators, we will have an analogous result that gives T =
∫ b
a λ dE(λ).

We have to make sense of this integral.
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20 Positive Operators and Spectral Families

20.1 Positive operators

We want to generalize the following theorem, without the assumption of compactness.

Theorem 20.1 (Spectral theorem in finite dimensions). Let dim(H) < ∞, and let T :
H → H be a self-adjoint operator with eigenvalues a ≤ λ1 < λ2 < · · · < λm = b. Then

T =
n∑
i=1

λiPλi ,

where Pλi is the projection onto ker(T − λi).

Example 20.1. On L2([0, 1]) we have Tf(x) = xf(x), the multiplication operator. Then
‖T‖op ≤ 1, and

〈Tf, g〉 =

∫ 1

0
xf(x)g(x) dx = 〈f, Tg〉 .

However, T has no eigenvectors! If Tf = λf , then xf(x) = λf(x) for a.e. x. So f = 0 a.e.

Observe that if V = ker(T − λ) 6= {0}, then V is reducing and T |V = λIV . We want to
loosen this to µIV ≤ T |V ≤ λIV for µ < λ.

Definition 20.1. T ∈ B(H) is positive (written T ≥ 0) if T is self-adjoint and 〈Tx, x〉 ≥ 0.
If S, T are self-adjoint, we say S ≤ T if T − S ≥ 0.

This defines a partial order on the set of self-adjoint operators. How does this relate to
our previous examples?

Example 20.2. In the finite dimensional case, for λ ∈ R, define

E(λ) :=
∑
i:λi≤λ

Pλi , E(µ, λ) :=
∑

µ<λi≤λ
Pλi = E(λ)− E(µ).

These all reduce T , and

µE(µ, λ) ≤ TE(µ, λ) ≤ λE(µ, λ)

for all µ ≤ λ. If λi is the unique element of σp(T ) ∩ (µ, λ], λiPi ≤ TPλi ≤ λiPi.

Example 20.3. With the multiplication operator T on L2, let V (µ, λ) := {f ∈ L2([0, 1]) :
f = f1(µ,λ]} for any µ ≤ λ. Then let E(µ, λ) = PV (µ,λ). We can check that

TE(µ, λ)f(x) = xf1(µ,λ](x).

Then µE(µ, λ) ≤ TE(µ, λ) ≤ λE(µ, λ).
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Lemma 20.1. Let T be self-adjoint, and let a = inf‖x‖=1 〈Tx, x〉. and b = sup‖x‖=1 〈Tx, x〉.
Then a ≤ T ≤ b and ‖T‖ = max(|a|, |b|).

Proof. If ‖x‖ = 1, then
〈(T − a)x, x〉 = 〈Tx, x〉 = a ≥ 0.

The upper bound is the same.
We have seen already that ‖T‖ = sup | 〈Tx, x〉 |.

Corollary 20.1. If S ≤ T and T ≤ S then S = T .

Proof. This implies that 〈(S − T )x, x〉 = 0 for all x. So the norm is ‖S − T‖ = 0.

Lemma 20.2. For projections P,Q, the following are equivalent:

1. P ≤ Q.

2. QP = PQ = P .

3. Q− P is a projection.

4. ‖Px‖ ≤ ‖Qx‖.

5. ranP ⊆ ranQ.

Proof. (1) =⇒ (5): If (5) is false, then there is some x 6= 0 such that Px = x but Qx 6= x.
Then ‖x‖2 = 〈Px, x〉, but 〈Qx, x〉 = ‖Qx‖2 < ‖x‖2. This contradicts (1).

(5) =⇒ (2): QP = P by the condition of (5), and we get (QP )∗ = P ∗Q∗ = PQ by
self-adjointness.

(2) =⇒ (4): ‖Px‖ = ‖PQx‖ ≤ ‖Qx‖.
(2) =⇒ (3): 〈(Q− P )x, x〉 = 〈Q(1− P )x, x〉 = 〈Q(1− P )x,Qx〉 ≥ 0.
(3) =⇒ (1): Q− P is a projection, so Q− P ≥ 0.

20.2 Spectral families and the spectral theorem

Definition 20.2. A spectral family on H is a map λ 7→ E(λ) from R → {proj. on H}
such that

1. If λ > µ, then E(λ) ≥ E(µ)

2. There exist a, b ∈ R such that E(λ) = 0 if |lambda < a and E(λ) = I if λ ≥ b.

3. E(λ)x→ E(µ)x as λ ↓ µ for all x ∈ H (convergence in the strong operator topology).
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Theorem 20.2. Let T be a self-adjoint operator on H. Then there exists a spectral family
(E(λ))λ∈R such that

a = inf
‖x‖=1

〈Tx, x〉 , b = sup
‖x‖=1

〈Tx, x〉

T =

∫
R
λ dE(λ).

This means 〈Tx, y〉 =
∫

[a,b] λ dµx,y for all x, y ∈ H, where µx,y is the Lebesgue-Stieltjes
measure corresponding to Fx,y.

To interpret this integral, we need the following lemma.

Lemma 20.3. If E is a spectral family, then for any x, y ∈ H, then function Fx,y : λ 7→
〈E(λ)x, y〉 is right-continuous and of bounded variation.

Proof. Right continuity follows from property (3) of a spectral family. For bounded varia-
tion,

Step 1: If y = x, then Fx,x(λ) = ‖E(λ)x‖2, which is increasing with λ.
Step 2:

Fx,y(λ) = 〈E(λ)x, y〉 =
〈E(λ)(x+ y), x+ y〉 − 〈E(λ)x, x〉 − 〈E(λ)y, y〉

2

is a difference of nondecreasing functions, so it is of bounded variation.

Example 20.4. In the finite dimensional case, E(λ) is constant, except for finitely many
jumps. So the integral becomes a finite sum.

Example 20.5. Returning to the multiplication operator on L2, if f, g ∈ L2([0, 1]), then

〈Tf, g〉 =

∫ 1

0
xf(x)g(x) dx, dx = dµf,g.

Here, E(λ) is the proejction onto {f = f1[0,λ]} ,and 〈E(λ)f, g〉 =
∫ λ

0 fg dx.

20.3 Functional calculus

How do we find this map λ 7→ E(λ)? In the finite dimensional case, we have a self-adjoint T
with eigenvalues a = λ1 < λ2 < · · · < λm = b and T =

∑
i λiPλi . If p(t) =

∑k
j=1 xjt

j ∈ R[t]

is a polynomial, we can write p(T ) =
∑k

j=1 cjT
j . Since T j =

∑
i λ

j
iPi, we have p(T ) =∑

i p(λi)Pλi .
Choose any pλ ∈ R[t] such that

pλ(t) =

{
1 t = λi ≤ λ
0 t = λi > λ.
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Then
pλ(T ) =

∑
λi≤λ

Pλi = E(λ).

We need to make this work in infinite dimensions. But R[t] is not rich enough. We
must extend the map R[T ] → B(H) taking p 7→ p(T ) to a larger class of functions. After
doing so, we get the functional calculus of T . In particular, we want to be able to get
the function p(T ), where p(t) = 1(−∞,λ](t).
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21 Continuous Functional Calculus for Self-Adjoint Opera-
tors

21.1 Idea for proving the general spectral theorem for self-adjoint oper-
ators

Theorem 21.1. Let T be a self-adjoint operator on H with

a = inf
‖x‖=1

〈Tx, x〉 , b = sup
‖x‖=1

〈Tx, x〉 .

Then there exists a spectral family (E(λ))λ∈R such that

T =

∫
R
λ dE(λ).

This means 〈Tx, y〉 =
∫

[a,b] λ dµx,y for all x, y ∈ H, where µx,y is the Lebesgue-Stieltjes

measure corresponding to Fx,y(λ) = 〈E(λ), x, y〉.

Method: Consider the map R[x]→ B(H) sending p(t) =
∑n

i=1 cit
i 7→

∑n
i=1 ciT

i.

Remark 21.1. This is a homomorphism of algebras over R.

The idea is to enrich the domain of this homomorphism to produce many more operators
out of T . Why is this relevant? Suppose

T =
N∑
i=1

λiE(λi−1, λi)

like in the finite case. Then

T 2 =
N∑
i=1

λ2
iE(λi−1, λi).

This generalizes to any polynomial of T . Assume we can do this for the functions p(t) =
1(−∞,µ](t). Then

p(T ) =

∫ µ

a
p(λ) dE(λ) = E(µ).

So this should tell us what E(µ) is. The proof of the spectral theorem is basically this idea
in reverse.
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21.2 Continuous functional calculus

When we extend our functional calculus to non-polynomial functions, we only really care
what the functions only do on the spectrum of T . In particular, the function p(T ) should
only depend on the values of p in [a, b], where a, b are as above.

Our next goal is to show that if p ∈ R[t] and c ≤ p(t) ≤ d for all t ∈ [a, b], then
cI ≤ p(T ) ≤ dI. It is enough to show one side of the inequality, and so it is enough to
show it when c = 0. So we will show that if p|[a,b] ≥ 0, then p(T ) ≥ 0.

Lemma 21.1 (sum of squares decomposition). If p ∈ R[t] and p ≥ 0, then there exist
q1, . . . , qm ∈ R[t] such that p(t) =

∑m
i=1 qi(t)

2.

Remark 21.2. This can actually be shown for m = 2.

Proof. Let p(t) =
∑n

i=0 cit
i. If n = 0, we are done. Suppose n ≥ 1 and p ≥ 0. Then n

is even, and cn > 0. Then there exists some u ∈ R such that p(u) = min p(R) =: c. Let
p1(t) := p(t)− c. Then p1 ≥ 0, and p1(0) = 0. This implies that (t− u)2 divides p in R[t].
so p1(t) = (t− u)2p2(t). Since p2 is continuous, p2 ≥ 0 with deg p2 = n− 2. By induction,
p2(t) =

∑
j qj(t)

2, and we get

p(t) =
∑
j

((t− u)qj(t))
2 + (

√
c)2.

Proposition 21.1. Let T be self-adjoint. If p|[a,b] ≥ 0, then p(T ) ≥ 0.

Proof. Step 1: Assume p ≥ 0. Then p(t) =
∑

j qj(t)
2, so p(T ) =

∑
j(qj(T ))2, which is a

sum of positive operators:
〈
(q(T ))2x, x

〉
= ‖q(T )x‖2.

Step 2: Assume a = −1, b = 1, so p|[−1,1] ≥ 0. Let ε > 0, and choose δ > 0 such that
(p+ ε)|[−(1+δ),1+δ] ≥ 0. Define pn(t) = p(t) = ε+ ( t

1+δ )2n. Then pn ≥ 0 for all sufficiently
large n. So by case 1, pn(T ) ≥ 0 for all sufficiently large n. But

‖(p+ ε)(T )− pn(T )‖ =

∥∥∥∥( T

1 + δ

)n∥∥∥∥ ≤ ‖T‖n

(1 + δ)n
=

1

(1 + δ)n
→ 0.

So pn(T )
op−→ (p+ ε)(T ), which makes (p+ ε)(T ) ≥ 0. Then p(T ) ≥ 0.

So p 7→ p(T ) satisfies ‖p(T )‖op ≤ ‖p|[a,b]‖sup. So if f ∈ C([a, b]), define f(T ) =
limn pn(T ). Then for all pn ∈ R[t] such that pn → f uniformly on [a, b] this is well-defined.
So f 7→ f(T ) is still a homomorphism: If pn → f and qn → g in C([a, b]), then pnqn → fg
in C([a, b]). Therefore,

(fg)(t) = lim
n

(pnqn)(T ) = lim
n
pn(T )qn(T ) = f(T )g(T ).

This gives us a well-defined functional calculus for continuous functions.
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21.3 Weak operator limits of positive functions

Definition 21.1. If 〈Tn〉 ∈ B(H) and T ∈ B(H), Tn → T in the weak operator topology
if 〈Tnx, y〉 → 〈Tx, y〉.

Remark 21.3. We could also define the strong operator topology by Tnx → Tx for
all x ∈ H.

Proposition 21.2. Suppose 〈Tn〉n ∈ B(H) with Tn ≥ 0 and Tn ≥ Tn+1 for all n. Then

there exists a positive T ∈ B(H) such that Tn
WOT−−−→ T .

Remark 21.4. We actually get SOT convergence here, but the proof is a bit harder.

Proof. For all x ∈ H, 〈Tnx, x〉 must converge to some Q(x, x) ≥ 0. FOr all x, y we get

〈Tnx, y〉 =
1

2
(〈Tn(x+ y), x+ y〉 − 〈Tnx, x〉 − 〈Tny, y〉)

→ 1

2
(Q(x+ y, x+ y)−Q(x, x)−Q(y, y))

=: Q(x, y).

Check that (x, y) 7→ Q(x, y) is symmetric, bilinear, positive, and Q(x, x) ≤ M‖x‖2 for
some M .

So for each x, the map Q(x, ·) ∈ H∗ = H and is bounded: ‖Q(x, ·)‖ ≤M‖x‖. By Riesz
representation, there exists some Tx ∈ H such that Q(x, y) = 〈Tx, y〉 for all x, y. Check
that T ∈ B(H) is self-adjoint with T ≥ 0.

The idea for the next step is to let 〈fn〉n ∈ C([a, b]) be bounded below with fn ↓ g
(possible e.g. if g = 1(−∞,µ]). Then if fn ≥ f in C([a, b], fn(T ) ≥ fn+1(T ) in B(H). We
will define g(T ) as the WOT limit of the fn(T ).
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22 Extension of Functional Calculus and Proof of The Spec-
tral Theorem

22.1 Proof of the spectral theorem for self-adjoint operators

So far, we’ve constructed continuous functional calculus: a map C([a, b])→ Bsa(H) sending
f 7→ f(T ) which is

• linear,

• f(g)(T ) = f(T )g(T ),

• f ≥ g =⇒ f(T ) ≥ g(T ),

• 1(T ) = I,

• ‖f(T )‖ ≤ ‖f‖sup.

If (fn)n is a sequence in C([a, b]) with fn ≥ 0 and fn(x) ↓ g(x) for all x ∈ [a, b], then
we want to define g(T ) by 〈g(T )x, y〉 = limn 〈fn(T )x, y〉. Last time, we showed that this
limit exists (as a weak operator topology limit).

Lemma 22.1. Suppose fn, f
′
n ↓ g. Then the limit, g(T ), is the same.

Proof. Let fn, f
′
n ↓ g. For every x, ε > 0, and n ∈ N, there exists an n′(x, ε) such that

f ′n′(x) < g(x) + ε ≤ fn(x) + ε. Then for each n ∈ N, ε > 0 and x, we get n′(n, x, ε) and a
neighborhood U(n, x, ε) of x such that f ′u′ |Un,x,ε < (fn + ε)|U(n,x,ε). Choose x1, . . . , xt such

that
⋃t
i=1 U(n, xi, ε) = [a, b]. Let n′′ = max(n′(n, x1, ε), . . . , n

′(n, xt, ε)). Now f ′n′′ < fn + ε
on [a, b]. Then f ′n′′(T ) ≤ fn(T ) + εI, so limn′′ f

′
n′′(T ) ≤ fn(T ) + ε for all n, ε. Since

ε is arbitrary, and by symmetry, we get that lim f ′n(T ) ≤ limn fn(T ) and lim f ′n(T ) ≥
limn fn(T ). So the limits are equal.

Now, if we have fn ↓ g ≥ 0, we get g(T ) ≥ 0. This is

• still additive: If fn ↓ g, f ′n ↓ g;, then fn + f ′n ↓ g + g′. We have

(g + g′)(T ) = WO lim
n

(fn(T ) + f ′n(T )) = g(T ) + g′(T ).

Lemma 22.2. If fn ↓ g ≥ 0, and f ′n ↓ g′n ≥ 0, then

(gg′)(T ) = g(T )g′(T ).

Proof. We have fnf
′
n ↓ gg′, so (gg′)(T ) = WO limn(fnf

′
n)(T ). We want to show that the is

the product of the limits of fn(T ) and f ′n(T ). By polarization, it is enough to show that
limn 〈(fnf ′n)Tx, x〉 = limn limm 〈fn(T )f ′m(T )x, x〉. The limit of the diagonal terms is the
same as limn limm because the array is decreasing in n,m (a basic real analysis fact).
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Given λ in[a, b] and n ∈ N, define

ϕλn(t) =


1 t ≤ λ
−n(x− (λ+ 1/n)) λ < t ≤ λ+ 1/n

0 t > λ+ 1/n

Then ϕλn ↓ 1(−∞,λ] as n→∞. Define E(λ) := limn ϕ
λ
n(T ).

Here are the properties of E(λ):

1. E(λ) is self adjoint (as a WO limit of self-adjoints).

2. E(λ) = 1(−∞,λ](T ) = 1
2
(−∞,λ](T ) = E(λ)2.

3. If λ ≥ µ, then

E(µ)E(λ) = E(λ)E(µ) = (1(−∞,λ]1(−∞,µ])(T ) = E(µ).

4. Declare E(λ) = 0 if λ < a and E(b) = limn 1(T ) = I.

5. Fix λ ∈ [a, b]. Then E(µ)x → E(λ)x as µ ↓ λ for all x ∈ H. Equivalently,
〈(E(µ)− E(λ))x, x〉 → 0.

To show this, we know 〈E(λ)x, x〉 = limn

〈
ϕλn(T )x, x

〉
. Pick n large enough so that〈

ϕλn(T )x, x
〉
< 〈E(λ)x, x〉+ ε. This is also limµ↓λ 〈ϕµn(T )x, x〉. So for µ close enough

to λ, we get

〈E(µ)x, x〉 ≤ 〈ϕµn(T )x, x〉 < 〈ϕλn(T )x, x〉+ ε < 〈E(λ)x, x〉+ 2ε.

This gives us a spectral family for T . If a ≤ µ ≤ λ ≤ b, then

E(µ, λ] := E(λ)− E(µ) = WO lim
n

[ϕλn(T )− ϕµn(T )].

This gives us

TE(µ, λ] = WO lim
n
T [ϕλn(T )− ϕµn(T )] = WO lim

n
[(t · (ϕλn(t)− ϕµn(t)))(T )].

Now
µ1(µ+1/n,λ] ≤ t(ϕλn(t)− ϕµn(λ)) ≤ λ1(µ,λ+1/n]

Taking the weak operator limit, we get

µE(µ, λ) ≤ TE(µ, λ) ≤ λE(µ, λ).

Now let a = λ0 < λ1 < · · · < λm = b. Then

I = E(B)
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= (E(λn)− E(λn−1)) + · · ·+ (E(λ1)− E(λ0))

= E(a, λ1] + E(λ1, λ2] + · · ·+ E(λn−1, b].

Multiplying by T , we get

T = TE(a, λ1] + TE(λ1, λ2] + · · ·+ TE(λn−1, b].

So we get
m∑
i=1

λi−1E(λi−1, λi] ≤ T ≤
n∑
i=1

λiE(λi−1, λi].

This gives

m∑
i=1

λi−1 〈E(λi−1, λi]x, x〉 ≤ 〈Tx, x〉 ≤
n∑
i=1

λi 〈E(λi−1, λi]x, x〉 .

These are partial sums in the definition of the Riemann-Stieltjes integral. So taking the
limit as maxi |λi − λi−1| → 0, we get

〈Tx, x〉 =

∫
λ d 〈E(λ)x, x〉 .

This completes the proof of the spectral theorem.

22.2 Borel functional calculus and spectral measure

How far can we take this functional calculus? Here is another method which allows us to
extend to all Borel functions. Assume we have a continuous functional calculus: f 7→ f(T )
for all f ∈ C([a, b]). Given x, y ∈ H, consider

f 7→ 〈f(T )x, y〉 .

This is bounded by | 〈f(T ), x, y〉 | ≤ ‖f‖sup‖x‖‖y‖. So there exists some µx,y ∈ M([a, b])
such that ‖µx,y‖ ≤ ‖x‖‖y‖ and 〈f(T )x, y〉 =

∫
f dµx,y. So given g bounded and Borel,

define

Qg(x, y) :=

∫
g dµx,y.

This is bilinear in x, y and bounded: |Qg(x, y)| ≤ ‖g‖∞‖x‖‖y‖. At each step, our con-
struction is symmetric in x, y, so Qg(x, y) is symmetric in x, y. Now define g(T ) by
〈g(T )x, y〉 = Qg(x, y). We can now define, as before, 1(−∞,λ](T ).

The advantage of this method is that we can also define E(A) := 1A(T ) for all A ∈
B([a, b]). We can now show that

• Every E(A) is a projection.

76



• E(A ∩B) = E(A)E(B).

• E(∅) = 0, and E([a, b]) = I.

• E(
⋃
nAn) =

∑
nE(An).

This gives a spectral measure, which has the properties of a measure but takes values
in projections. More advanced versions of the spectral theorem use this approach.
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23 Spectral Theorem for Normal Operators

23.1 Spectral theorem for normal operators

Let T be a self-adjoint, bounded operator on a Hilbert space H. We have shown that

T =

∫
[a,b]

λ dE(λ),

in the sense that

〈Tx, y〉 =

∫
[a,b]

λ d〈E(λ), x, y〉,

where d 〈E(λ), x, y〉 is the Lebesgue-Stieltjes measure given by the map λ 7→ 〈E(λ), x, y〉.
We can extend our functional calculus to Borel-measurable functions by defining f(T )

to satisfy

〈f(T )x, y〉 =

∫
[a,b]

f(λ) d〈E(λ), x, y〉.

So we can construct a spectral measure E : B([a, b])→ Proj(H) such that

• E(∅) = 0, E([a, b]) = I,

• If An are disjoint, E(
⋃∞
n=1An)x =

∑∞
n=1E(An)x for all x (this is a weak operator

convergent sum).

• E(A ∩B) = E(A)E(B) for all A,B ∈ B([a, b]).

Diagonalization of an operator looks like

T =
∑

λ∈σp(T )

λPλ.

In the self-adjoint case, all λs must be real. In the case of normal operators, λ may be
complex.

Theorem 23.1 (Spectral theorem for bounded normal operators). Let H be a Hilbert
space over C, and let N ∈ B(H) be normal. Then there is a compact D ⊆ C and a spectral
measure E : B(D)→ Proj(H) such that

N =

∫
D
z dE(z).

In other words,

〈Nx, y〉 =

∫
z d〈E(z)x, y〉,

where U 7→ 〈E(U)x, y〉 is a complex-valued measure for each x, y ∈ H.
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Given N , we can write S + iT , where S, T are both self-adjoint and commute.

Lemma 23.1. In the spectral representation of T , every E(λ) commutes with every oper-
ator that commutes with T .

Proof. If p ∈ R[t]) and S commutes with T , then S commutes with p(T ). Commutativity

survives for f(T ) with f ∈ C([a, b]) by convergence in operator norm. Finally, if Tn
WO−−→ T

and STn = TnS for all n, then

〈STx, y〉 = 〈Tx, S∗y〉 = lim
n
〈Tnx, S∗y〉 = 〈TSx, y〉 ,

for all x, y ∈ H, so ST = TS.

Corollary 23.1. ES(µ)ET (λ) = ET (λ)ES(µ) for all λ, µ.

Proof. Apply the lemma twice.

Now, given (p, q] + i(r, s] ⊆ C, define

E((p, q] + i(r, s]) := ES((p, q]) + iET ((r, s])

= (ES(q)− ES(p)) + i(ET (s)− ET (r)).

Warning: We may have
〈
ES((p, q])ET ((r, s])x, u

〉
6=
〈
ES((p, q])x, y

〉 〈
ET ((r, s]x, y

〉
.

Let aS = inf 〈Sx, x〉 and bS = sup 〈Sx, x〉, and define aT and bT similarly. We can now
define

N ′ =

∫
D
z dE(z), D = [aS , bS ] + i[aT , bT ].

We want to check that N ′ = N . Using the spectral theorem for self-adjoint operators,

N ′ =

∫
D
x dE(z) + i

∫
D
y dE(z) = S + iT = N.

The middle step is by a “Fubini”-type argument.

23.2 Approximate eigenvalues

In the compact case, we had T =
∑∞

i=1 λiPλi , where the λi were the eigenvalues of T .

Definition 23.1. Let X be a normed space. λ ∈ C is an approximate eigenvalue for
T ∈ B(X) if

inf{‖(T − λ)x‖ : ‖x‖ = 1} = 0.

For compact operators, we saw that these were actually eigenvalues of the operator. In
general, this isn’t true. Here is an example:
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Proposition 23.1. Let H = L2([0, 1]), and let Tf(x) = xf(x). Then λ is an approximate
eigenvalue if and only if λ ∈ [0, 1].

Proof. Let 0 ≤ λ ≤ 1, so (T − λ)f(x) = (x − λ)f(x). For any ε > 0, pick f ∈ L2([0, 1])
with ‖f‖ = 1 such that f(x) = 0 if x /∈ (λ− ε, λ+ ε). Then ‖Tf‖ ≤ ε‖f‖.

How does this play into our spectral representation, T =
∫

[a,b] λ dE(λ)?

Definition 23.2. The support of E is {λ : E(λ+ ε) 6= E(λ− ε) ∀ε > 0}.

Proposition 23.2. The support of E is the set of approximate eigenvalues for T .

Proof. (⊇): Suppose that E(c) = E(d) for some a ≤ c < d ≤ b, and let c < µ < d; we will
show that µ is not an approximate eigenvalue. Then

T =

∫
[a,b]

λ dE(λ) =

∫
[a,c]

λ dE(λ) +

∫
[d,b]

λ dE(λ),

so we get

T − µ =

∫
[a,b]

λ dE(λ) =

∫
[a,c]

(λ− µ) dE(λ)︸ ︷︷ ︸
T1

+

∫
[d,b]

(λ− µ) dE(λ)︸ ︷︷ ︸
T2

.

Both T1 and T2 are reduced by I = E(x) + E(d, b]. If we write x = x1 + x2, then

‖T1x1‖ ≥ |c− µ|‖x1‖, ‖T2x2‖ ≥ |d− µ|‖x2‖,

so we cannot make these arbitrarily small.
(⊇): If µ ∈ spt(E), let ε > 0. Then E(µ− ε, µ+ ε] 6= 0. Pick x with ‖x‖ = 1 such that

E(µ− ε, µ+ ε]x = x. Then

〈(T − µ)x, y〉 =

∫
[a,b]

(λ− µ) dE(λ)x =

∫
[µ−ε,µ+ε

(λ− µ) d〈E(λ)x, y〉 ≤ ε‖x‖‖y‖.

This will give us a better idea of what the set D is. It will be a set of eigenvalues.

23.3 Banach algebras

Definition 23.3. An algebra over F is a vector space A over R togetehr with a multi-
plication A× A→ A : (a, b) 7→ ab which is associative and distributive with addition. An
algebra has an identity if there is some e ∈ A such that ea = ae = a for all a ∈ A.

Definition 23.4. A Banach algebra is a Banach space A which is also an algebra such
that

‖ab‖ ≤ ‖a‖‖b‖, ∀a, b ∈ A.
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Example 23.1. Let X be compact and Hausdorff. Then C(X) is a Banach algebra. If X
is locally compact, C0(X) is a Banach algebra.

Example 23.2. L∞(µ) is a Banach algebra.

These are all commutative. Here are some noncommutative examples.

Example 23.3. B(X) is a Banach algebra if X is a Banach space.

Example 23.4. The collection of compact operators, B(X), is a Banach algebra (when X
is a Banach space).
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24 Banach Algebras

24.1 Convolution of measures

Understanding Banach algebras will help us obtain a better understanding of the spectral
theorem.

Here is a motivating example.

Example 24.1. Let G be a locally compact Hausdorff group (so you can think of G = Rd).
Then there is a space M(G) of finite, regular, F-valued Borel measures. Given µ, ν ∈M(G),
define the convolution

µ ∗ ν(A) := µ× ({(g, h) : gh ∈ A}).

This is related to convolution of functions: dµ = f dm and dν = f ′ dm, then f(µ ∗ ν) =
(f ∗ f ′) dm. We could alternatively define this by its action on f ∈ C0(G):∫

f d(µ ∗ ν) =

∫∫
f(gh) dµ(g) dν(h).

This is distributive over addition, and associative:∫
f d((µ ∗ ν) ∗ λ) =

∫∫
f(ghk) fµ(g) dν(h) dλ(k).

Observe that∣∣∣∣∫ f d(µ ∗ ν)

∣∣∣∣ =

∣∣∣∣∫∫ f(gh) dµ(g) dν(h)

∣∣∣∣ ≤ ∫∫ |f(gh)| d|µ| d|ν| ≤ ‖f‖ · ‖µ‖ · ‖ν‖,

so ‖µ ∗ ν‖ ≤ ‖µ‖‖ν‖.
There is also an identity element with respect to convolution, δe. We have

(δe ∗ µ)(A) = (δe × µ)({(g, h) : gh ∈ A}) = µ({h : h ∈ A}) = µ(A),

and a similar property holds for right multiplication by δe. You can also check that δg∗δh =
δgh. So M(X) is a unital Banach algebra with convolution as the multiplication.

24.2 Invertibility and ideals

Definition 24.1. Let A be a Banch algebra. Then x ∈ A is left-invertible if there is
some y ∈ A such that yx = 1, right-invertible if there is some y ∈ A such that xy = 1,
and invertible if it is left and right invertible.

If x is left and right invertible, the inverses are the same: z = yxz = y. We write this
as x−1.

One important question is: Given an algebra, can we recover information about what
generated it?
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Definition 24.2. M is a left ideal in A if M is a vector subspace and xy ∈ M for all
x ∈ A and y ∈M . M is a right ideal in A if M is a vector subspace and yx ∈M for all
x ∈ A and y ∈M . M is an ideal if it is a left and right ideal.

Example 24.2. The compact operators, B0(X) ⊆ B(X), form an ideal.

Example 24.3. Let X 6= ∅ be compact, and let K ( X be closed and nonempty. Then
C(X) ⊇ {f ∈ C(X) : f |K = 0} =: I(K). Then K ⊆ L ⇐⇒ I(L) ⊆ I(K).

These get bigger if K gets smaller In fact, there is a correspondence between maximal
ideals of C(X) and points of X. So we can recover X from C(X).

Lemma 24.1. Let A is a Banach algebra with identity, and let x ∈ A have ‖x− 1‖ < 1.
Then x is invertible.

Proof. Let y :=
∑∞

k=0(1 − x)k. The norm of the k-th term is ≤ 1‖1 − x‖k. So this is an
absolutely convergent series. So for any z ∈ A, we have zy =

∑∞
k=0 z(1− x)k. This gives

(1− x)y =
∞∑
k=0

(1− x)(1− x)k =
∞∑
k=0

(1− x)k+1 = y − (1− x)0.

So we get xy = (1− x)0 = 1.

Corollary 24.1. If ‖x− 1‖ < ε < 1, then ‖x−1 − 1‖ < ε
1−ε .

Proof.

‖x−1 − 1‖ =

∥∥∥∥∥
∞∑
k=1

(1− x)k

∥∥∥∥∥ ≤
∞∑
k=1

‖1− x‖k < ε

1− ε
.

Corollary 24.2. If ba = 1 and ‖c− a‖ < 1/‖b‖, then c is left-invertible.

Proof. We have
‖bc− 1‖ = ‖bc− ba‖ ≤ ‖b‖‖c− a‖ < 1.

so there is an x = (bc)−1. So (xb)c = 1 means that xb is the inverse of c.

Proposition 24.1. Let A be a Banach algebra with identity, let G` be the left-invertible
elements, let Gr be the right-invertible elements, and let G = G` ∩Gr. Moreover, the map
G→ G : x 7→ x−1 is continuous.

Proof. Openness follows from the previous corollary. For continuity, if x ∈ G, suppose that
‖y − x‖ < ε−1 for some small enough ε > 0. Then ‖x−1y − 1‖ < ε‖x−1‖ < 1. So

‖(x−1y)−1 − 1‖ < ε‖x−1‖
1− ε‖x−1‖

.

Then y−1 exists (because it is equal to (x−1y)−1x−1, and

‖y−1 − x−1‖ < ε‖x−1‖2

1− ε‖x−1‖
.
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24.3 Maximal ideals and quotients

Definition 24.3. A left/right/two-sided ideal M is maximal if it is

1. proper (M 6= A),

2. M is not properly contained in any other proper ideal.

Corollary 24.3. If A has an identity, then

1. The closed of a left/right/two-sided ideal is an ideal of the same kind.

2. Maximal ideals are closed.

Proof. Check the proof of (1).
If M is a maximal (e.g. two-sided) ideal, then M∩G` = ∅. This is because if x ∈M∩G`,

then there exists some y such that yx = 1. So 1 ∈M , but then a = a1 ∈M for all a ∈ A .
So M = A . In fact, we have M ∩G` = ∅. Now M = M by maximality.

Example 24.4. The algebra C0(R) ⊇ Cc(R) = {f : f |[−a,a]c = 0 for some a}. This is a
dense ideal. This tells us that this fact really relies on the existence of an identity.

Proposition 24.2. Any proper (left/right/two-sided) ideal in any algebra is contained in
a maximal (left/right/two-sided) ideal.

Proof. Zorn’s lemma.

Lemma 24.2. Let A be a Banach algebra, and let M be a closed idea in A . Then A /M
is still a Banach algebra.

Proof. Given (x+M), (y+M) ∈ A /M , define (x+M)(y+M) := xy+M . To show that
this is well-defined, we have that for any m,n ∈M ,

(x+m+M)(y + n+M) = xy +my + xn+mn︸ ︷︷ ︸
∈M

+M = xy +M.

To check that A /M is a Banach algebra, we have

‖(x+M)(y +M)‖ = ‖xy +M‖ ≤ ‖xy‖ ≤ ‖x‖‖y‖.

This is true for all x, y, so we can take the inf over x and y to get ‖(x + M)(y + M)‖ ≤
‖(x+M)‖‖(y +M)‖.
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24.4 The spectrum of an element

Definition 24.4. Let A have an identity, and let x ∈ A. The spectrum is σ(x) = {λ ∈
F : x − λ not invertible, the left-spectrum is σ`(x) = {λ ∈ F : x − λ not left-invertible,
and right-spectrum is σr(x) = {λ ∈ F : x − λ not right-invertible. The resolvent is
ρ(x) = F \ σ(x).

Example 24.5. Let X be a compact, Hausdorff space, and let f ∈ C(X). Then σ(f) =
f(X) is the image of f . If g(f − λ) = 1, then g(x) = 1

f(x)−λ for all x.
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25 Weakly Compact Operators

25.1 Weak compactness and reflexivity

In this lecture, X, Y , etc. will be real13 Banach spaces. We will write BX as the closed
unit ball in ‖ · ‖X .

Definition 25.1. T ∈ B(X,Y ) is weakly compact if T (BX)
wk(Y )

is is weakly compact
in Y .

We will start with a bit of a digression. Suppose we have a Banach space X. We can
embed it inside its dual X∗∗ by x 7→ x̂. The weak topology of X is the restriction of the
weak* topology on X∗∗ to X. We will denote by τ the weak* topology on X∗∗.

Proposition 25.1. Let X be a Banach space, and let τ be the weak* topology on X∗∗.
Then BX

τ
= BX∗∗; i.e. BX is τ -dense in BX∗∗.

Proof. Let C := BX
τ ⊆ BX∗∗ . Suppose that z ∈ BX∗∗ \ C. Then, by Hahn-Banach, there

exists a continuous linear functional f on (X∗∗, τ) and α ∈ R such that f(C) ≤ α < α+ε ≤
f(z). That is, there is a continuous linear functional on X such that

C(f) ≤ α < α+ ε ≤ z(f)

Moreover, C(f) contains a neighborhood of 0. By rescaling f , we can take α = 1. Then
C(f) := {y(f) : y ∈ C} ⊇ {f(x) : x ∈ BX}. What this says is that ‖f‖X∗ ≤ 1. However,
since z(f) is the pairing of elements in the unit balls of their respective spaces, we should
not have z(f) > 1,

Corollary 25.1. X is dense in X∗∗.

Corollary 25.2. X is reflexive if and only if BX is weakly compact.

Proof. ( =⇒ ): This is Banach-Alaoglu.
(⇐= ): If BX is weakly compact, then BX ⊆ X∗∗ is compact for τ . So BX is closed in

(X∗∗, τ). Then BX = BX
τ

= BX∗∗ .

We can rephrase this corollary as the following:

Corollary 25.3. X is reflexive if and only if IX is weakly compact.

Proposition 25.2. If X or Y is reflexive, then every T ∈ B(X,Y ) is weakly comapct.

Proof. Consider T (BX)
Y ⊆ Y ; we want to show that this is weakly compacts. If X is

reflexive, then BX is comapct, so T (BX) is weakly compact. On the other hand, if Y

is reflelxvibe, r(BY ) is compact for all r. Now take r large enough so that T (BX)
Y ⊆

rBY .
13The story is not so different for the complex case.
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Proposition 25.3. If S or T is weakly compact, so is S ◦ T .

This is the same proof as before.

25.2 Characterization of weak compactness

Corollary 25.4. T ∈ B(X,Y ) is weakly compact if it has a factorization

X Y

W

T

R
S

where W is reflexive.

Theorem 25.1. This is an exact characterization of weak compactness.

Proof. Every T has the factorization

X Y

X/ kerT

T

Q
T

where T (BX) = T (BX/ kerT ). So it is enough to treat T . So we may assume that kerT =
{0}.

Switch to regarding X ⊆ Y with different norms ‖·‖X and ‖·‖Y , where ‖·‖Y |X . ‖·‖X
(meaning there is an implicit constant in the inequality). We will find a W and ‖ · ‖W with
X ≤W ≤ Y such that (W, ‖ · ‖W ) is reflexive, ‖ · ‖Y |W . ‖ · ‖W , and ‖ · ‖W |X ≤ ‖ · ‖X .

The idea here comes from the theory of interpolated Banach spaces. For w ∈ Y ,
let pn(w) := inf{2−n‖x‖X + 2n‖y‖W : x ∈ X, y ∈ Y, x + y = w}.14 These are new norms
on Y . Let

p(w) :=

√∑
n

pn(w)2, W := {w : p(w) <∞}.

Check that

1. The pn satisfy the triangle inequality, so p does, too. Then p is a norm on W , and
(W,p) is a normed space. Moreover, W is a Banach space.

2. If x ∈ X, then pn(x) ≤ 2−n‖x‖X , so p(x) . ‖x‖X .

14Imagine you can pay for x ∈ X with ‖ · ‖X and y ∈ Y ‖ with ‖ · ‖Y . Then this is the least you have to
pay for w.
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3. If w ∈ W , then p1(w) ≤ p(w). So there exists a decompostion w = x + y such that
‖x‖X + ‖y‖W ≤ p(w). So ‖w‖Y = ‖x+ y‖Y . p(w).

To finish, we will show that W is reflexive. What is the dual of (W,p)? We claim that
f ∈W ∗ if and only if there is a sequence (fn)n ∈ Y ∗ such that f(w) =

∑
n fn(w) for all w

and
∑

n p
∗
n(fn)2 <∞, where p∗n is the dual norm on Y ∗ induced by pn.

Let Yn = (Y, pn). Then W is isometrically isomorphic to a subspace {(yn)n ∈
⊕

L2 Yn :
yn = ym ∀n,m}. Check that the dual of

⊕
L2 Yn is

⊕
L2 Y ∗n . So W ∗ is the quotient

(
⊕

L2 Y ∗n )/W⊥. This proves the claim.
To show that W is reflexive, we will show that IW is weakly compact. Now suppose

(zj)j ⊆ BW ; we want to find a weakly convergent subsequence in W . We may assume
that p(zj) < 1 for all j. Write zj = xj,n + yj,n such that 2−n‖xj,n‖X + 2n‖yj,n‖Y is very
close to pn(zj). In particular, pn(zj) < 1 for every n, so ‖xj,n‖X ≤ 2n and ‖yj,n‖Y ≤ 2−n.

Because BX is weakly precompact in Y , for each n, there is a yn ∈ Y such that xj,n
wk−−→ yn

as j → ∞. We also have that for each j, ‖xj,n − xj,m‖Y = ‖yj,n − yj,m‖ ≤ 2−n + 2−m.
Taking j → ∞, we get ‖yn − ym‖y ≤ 2−n + 2−m (weak limits cannot increase norm). So

yn
‖·‖Y−−−→ y ∈ Y as n → ∞. So we get that zj → y (weakly in Y ); check this from the

definition.
To finish, we need y ∈W , and we need to show that zj → y weakly in W . The point is

that for each n, pn(y) ≤ lim infj pn(zj). Then Fatou’s lemma gives p(y) ≤ lim infj p(zj) <
∞. So y ∈ W . Now for f(y) =

∑
n fn(y) =

∑
n limj fn(zj). We can take out the limit

outside the sum because |fn(y)| ≤ p∗n(fn)pn(y)., which is a uniform bound.
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26 The Spectrum and The Spectral Radius

26.1 The spectrum of an element

Let A be a Banach algebra with identity 1. Recall that if ‖a− 1‖ < 1, then a−1 exists and
equals

∑
k≥0(1− a)k. The spectrum of a is σ(a) = {z ∈ F : z − a is not invertible in A}

(and similarly for right/left spectrum σr, σ`). The resolvent is ρ(a) = F \ σ(a).

Example 26.1. Let X be a compact, Hausdorff space. If f ∈ C(X), then σ(f) = f [X].

Example 26.2. Let X be a Banach space, and let A ∈ B(X). Then

σ(A) = {λ ∈ F : A− λ is not a bijection X → X},

σ(A) = {λ ∈ F : inf{‖(A− λ)x : ‖x‖ = 1} = 0}.

Example 26.3. If F = R, we can have elements with empty spectrum. For example, take[
0 −1
1 0

]
∈M2(R).

If we take this as an element in M2(C), the spectrum is nonempty. So the spectrum depends
on the space the element is sitting in.

Theorem 26.1. If F = C and a ∈ A , then σ(a) is a nonempty, compact subset of
{z ∈ C : |z| ≤ ‖a‖}.

Proof. Consider z − a = z(1 − a/z). If |z| > ‖a‖, then ‖a/z‖ < 1. Then (z − a)−1 =
1
z (1− a

z )−1 exists. This tells us that σ(a) ⊆ {z ∈ C : |z| ≤ ‖a‖}.
Also ρ(a) = g−1({invertible elements}), where g(z) = z − a is continuous. Since the

invertible elements form an open set, we have ρ(a) is open. So σ(a) is closed and bounded.
Consider the resolvent function f : ρ(a)→ A by z 7→ (z−a)−1. This is a continuous

map from ρ(a)→ {invertible elements in A }. If |z| > ‖a‖, then

f(z) =
1

z

(
1− a

z

)−1
=

1

z

∑
k≥0

ak

zk
,

so we can get

‖f(z)‖ ≤ 1

|z|
∑
k≥0

‖a‖k

|z|k
= O(1/|z|) as |z| → ∞.

If z ∈ ρ(a), then
f(z + h) + f(z)

h

h→0−−−→ ((z − a)−1)2
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(proven below). So we can say “f is holomorphic on ρ(a).”15

This shows that if σ(a) = ∅, then f is a holomorphic and bounded function. By a
version of Liouville’s theorem (proven below), f is constant. So f = 0. But this is a
contradiction.

Lemma 26.1. If z ∈ ρ(a), then

f(z + h) + f(z)

h

h→0−−−→ ((z − a)−1)2.

Proof. If , y ∈ A are invertible, then

x−1 − y−1 = x−1yy−1− x−1xy−1

= xx−1(y − x)y−1.

This is called the resolvent identity. So

1

h
[(z + h− a)−1 − (z − a)−1] = (z + h− a)−1(z − a)−1

h→0−−−→ ((z − a)−1)2.

Lemma 26.2 (Liouville’s theorem for Banach-valued holomorphic functions). Let X be a
Banach space. If f : C→ X is holomorphic and bounded, it is constant.

Proof. For any ϕ ∈ X∗, ϕ ◦ f : C→ C is holomorphic and bounded, so it is constant.

This trick is a common way to transfer results from complex-valued holomorphic func-
tions to Banach-valued ones.

26.2 Spectral radius

Definition 26.1. Let a ∈ A . The spectral radius of a is r(a) := sup{|z| : z ∈ σ(a)}.

Example 26.4. In M2(C), let

a =

[
0 0
1 0

]
.

Then a2 = 0, so σ(a) = {0}. So the spectrum of a is nonempty, but it has zero spectral
radius.

Theorem 26.2 (spectral radius formula). Let a ∈ A . Then

r(a) = lim
n→∞

‖an‖1/n.
15This is a notion of holomorphic functions that take values in a Banach algebra.
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Remark 26.1. Since the norm is submultiplicative, this is ≤ ‖am‖1/m for any m. So this
equals infn ‖an‖1/n.

Proof. (≤): We know that r(a) ≤ ‖a‖. We claim that σ(am) = {zm : z ∈ σ(a)}.16

If λ ∈ C, then am − λ =
∏m
i=1(a − ωi), where the ωi are the m-th roots of λ. Since

each a − ωi is invertible, am − λ is invertible. If am − λ is invertible, then (a − ω1)−1 =∏m
i=2(a− ωi)(am − λ)−1. This proves the claim and gives us r(am) = r(a)m for any m. So

r(a) = r(am)1/m ≤ ‖am‖1/m for all m.
(≥): Let h(w) = ( 1

w − a)−1 for w such that 1
w ∈ ρ(a). Extend this so h(0) = 0. As

before,

h(w) = w
∑
k≥0

wkak ∀|w| < ‖a‖−1,

and h is holomorphic on {0} ∪ {1
z : z ∈ ρ(a)}. Now we use a fact from complex analysis

(which extends to this case): By Hadamard’s formula for the radius of convergence of a
series, the supremal R such that h has a holomorphic extension to the ball BC(0, R) equals
the radius of convergence of the series; this is limn 1/‖an‖1/n. So inf{1/|z| : z ∈ σ(a)} =
limn 1/‖an‖1/n.

Remark 26.2. Here is another way to show that the sequence converges. We have
‖an+m‖ ≤ ‖an‖ · ‖am‖, so log ‖an+m‖ ≤ log ‖an‖ + log ‖am‖. Now use Fekete’s subad-
ditive lemma.

Example 26.5. For f ∈ L2([0, 1]), the Volterra operator is

V f(x) =

∫ x

0
f =

∫ 1

0
1{y≤x}f(y) dy.

Then σ(V ) = {0}, so r(V ) = 0.

Proposition 26.1. If z ∈ ρ(a), then ‖(z−a)−1‖ ≥ 1
dist(z,σ(a)) . In other words, dist(z, σ(a)) ≥

1/‖(z − a)−1‖.

If z is in the spectrum, (z − a)−1 doesn’t exist. This says that if z is close to the
spectrum, then this blows up.

Proof. If h ∈ C with |h| < 1
‖(z−a)−1‖ , then

z + h− a = (z − a)(h(z − a)−1 + 1)

is invertible. So B(z, 1/‖(z − a)−1‖) ⊆ ρ(a).

16This is a special case of the spectral mapping theorem, which we will discuss later.
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26.3 Riesz functional calculus

Here is a teaser for what we will discuss next time.
If a ∈ A , then the resolvent map f : ρ(a) 7→ A takes z 7→ (z− a)−1. Any holomorphic

f : G → A satisfies Cauchy’s integral formula. As a result, if G is an open subset of C
with G ⊇ σ(a), then let Γ = γ1 ∪ · · · ∪ γm wind once around any z ∈ σ(a) and 0 times
around any z ∈ C \G. Then if f : G→ C is holomorphic, define

f(a) =
1

2πi

∫
Γ
f(z)(z − a)−1 dz ∈ A .

This allows us to produce more elements of our Banach algebra.
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27 Riesz Functional Calculus and The Gelfand Transform

27.1 Riesz functional calculus

Theorem 27.1 (Cauchy’s integral formula). Let G ⊆ C be open, let f : G → C be
holomorphic, and let Γ = γ1 ∪ · · · ∪ γn be a system of contours such that the total winding
number around any point in C \G is 0. Let z ∈ G \ Γ. Then

(winding # of Γ around z)f (k)(z) =
k!

2πi

∮
Γ

1

(z − w)k+1
f(w) dw ∀k ≥ 0.

This is ok when the target space is a Banach space X. The idea is that if A is a Banach
algebra over C with identity and a ∈ A , we let G be an open neighborhood of σ(a). Then
there exists some Γ = γ1 ∪ · · · cupγm such that the winding number is 0 around any point
in C \G and 1 around any point in σ(a).

Now define

f(a) :=
1

2π

∮
Γ
f(w) · (a− w)−1 dw.

This is well-defined because if we define this with Γ and Γ′, the difference is a sum of zeros
by the Cauchy integral formula. Here are the properties of the functional calculus we get
from this:

Proposition 27.1. Let A be a Banach algebra with identity, let a inA , and Hol(a) be
the functions holomorphic on the spectrum of a. Then

1. Hol(a)→ A : f 7→ f(a) is an algebra homomorphism.

2. If f(z) =
∑

k≥0 αkz
k has radius of convergence > r(a), then

f(a) =
∑
k

αka
k

3. If f1, f2, . . . , f are all holomorphic on G ⊇ σ(a) and fn → f uniformly on compact
subsets of G, then fn(a)→ f(a) in ‖ · ‖∞.

Remark 27.1. These properties uniquely determine this algebra homomorphism. The
proof uses Runge’s theorem; first do this for rational functions, and then extend via density.

27.2 Abelian Banach algebras

To return to the spectral theorem, we first need some considerations about abelian Banach
algebras.

Example 27.1. Let C(X) be a compact Hausdorff space. Then C(X) is an abelian,
Banach algebra. The maximal ideals in C(X) are the sets {f : f(x) = 0}. This tells you
that you can recover X by looking at the maximal ideals of C(X).
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Theorem 27.2 (Gelfand-Mazur). Let A be a Banach algebra with identity. Assume that
A is a division ring (every nonzero element of A is invertible). Then A = C · 1.

Remark 27.2. We are not assuming A is abelian, but this follows from the proof.

Proof. Let a ∈ A , and choose λ ∈ σ(a). Then a − λ is not invertible, so a − λ = 0. So
a = λ1.

Proposition 27.2. Let A be a unital, abelian Banach algebra over C If h : A → C is
a homomorphism (sending 1 7→ 1), then kerh is a maximal ideal, and all maximals ideals
arise this way uniquely.

Proof. If a ∈ kerh and b ∈ A , then h(ab) = 0h(b) = 0, so ab ∈ kerh. So kerh is an ideal.
If kerH ⊆ M ( A , where M is an ideal, then h(M) is a subspace of C (and actually

an ideal). Then h(M) = C or {0}. Since M is proper, we get h(M) = {0}. So M = kerh
is an ideal and is in fact maximal.

Now let M be a maximal ideal. There is the quotient map Q : A → A /M . Since
M is maximal, A has no nontrivial ideals. Then all nonzero elements are invertible, so
by Gelfand-Mazur, we get that A /M = C1A /M . If we call the isomorphism π : A /M →
C1A /M , then M = ker(π ◦Q).

Lemma 27.1.
{a ∈ A : a not invertible} =

⋃
Mmax.
ideal

M.

Proof. If a is in the left hand side, then {ab : b ∈ A } is an ideal without 1. So it is
contained in a maximal ideal.

On the other hand, if ab = 1 and a ∈ M for some ideal, then 1 ∈ M . So b = 1b ∈ M ,
making M = A .

We take the convention that ‖1‖A = 1.

Proposition 27.3. Any homomorphism h : A → C is continuous with ‖h‖A ∗ = 1.

The idea is that homomorphisms are a special kind of linear functional, the ones that
preserve multiplication. This says that they are all contained in the unit ball of A ∗.

Proof. h is continuous because kerh = M is closed. To show the norm estimate, we have
h(1) = 1, which gives ‖h‖A ∗ ≥ 1. Now let a ∈ A , and let λ = h(a) ∈ C \ {0}. Then
h(1− a

λ) = 0, so 1− a
λ is not invertible. Then ‖ aλ‖ ≥ 1. This gives |λ| ≤ ‖a‖.
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27.3 Maximal ideal spaces and the Gelfand transform

Definition 27.1. The maximal ideal space of A is

Σ = {h ∈ A ∗ : h unital homomorphism}.

Proposition 27.4. Σ is compact for the weak* topology.

Proof. Σ ⊆ BA ∗ , which is compact by Banach-Alaoglu. Also,

Σ = {h ∈ BA ∗ : h(1) = 1} ∩
⋂

a,b∈A

{h ∈ BA ∗ : h(ab)− h(a)h(b) = 0},

which is an intersection of weak*-closed sets. So Σ is compact.

Theorem 27.3. If X is a nonempty, compact, Hausdorff space, then x 7→ δx is a homeo-
morphism X → Σ, the maximal ideal space at C(X).

Proof. We only need to show that every maximal ideal M in C(X) has the form {f :
f(x) = 0}. By Riesz representation, h(f) =

∫
X f dµ. Since ‖h‖ = 1, h(1) = 1. So µ is a

probability measure. Now f ∈ M ⇐⇒
∫
f dµ = 0. And if f ∈ M , then |f |2 = ff ∈ M ¡

so
∫
|f |2 dµ = 0. Check that this implies that the support of µ is a singleton.

Proposition 27.5. If a ∈ A , then σ(a) = {h(a) : h ∈ Σ}.

Proof.

λ ∈ σ(a) ⇐⇒ a− λ not invertible

⇐⇒ a− λ is contained in some maximal M

⇐⇒ h(a)− λ = 0 for some h ∈ Σ.

Definition 27.2. The Gelfand transform of a ∈ A is the function â : Σ → C with
â(h) = h(a).

Now we can basically write the functional calculus but in reverse:

Theorem 27.4. a 7→ â is a continuous homomorphism A → C(Σ). Its kernel is rad(A) =⋂
h∈Σ kerh, and

‖â‖sup = lim
n
‖an‖1/n ≤ ‖a‖.

Proof. â ∈ C(Σ) because â = h(a) is the kind of functional which defines the weak*
topology. The expression for the norms is the spectral radius formula. Lastly, â = 0 for all
h if and only if h ∈ radA. This is an ideal (and intersection of ideals is an ideal).
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The Gelfand transform is the canonical “best possible way to compare A to continuous
functions on something.” It’s the best way because if we have another map A → C(X),
the radical will still get sent to 0. Next time, we will discuss conditions under which this
map is surjective.

Example 27.2. Let V ∈ B(L2([0, 1])) be the Volterra operator, so σ(V ) = {0}. Then
‖V n‖1/n → 0. Let A = {p(V ) : p ∈ C[x]}. This is an abelian Banach algebra with identity.

The Gelfand transform sends V 7→ V̂ = 0. Then if p(x) =
∑n

k=0 akx
k, p̂(V ) = a0 · 1. So

the kernel of the Gelfand transform is the unique maximal ideal. You can check that this
is {p(V ) : p ∈ C[X], p(0) = 0}.
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28 C∗-Algebras and Normal Functional Calculus

28.1 C∗-algebras

Definition 28.1. On an algebra A over C, an involution is a map A → A : a 7→ a∗

such that

1. (a∗)∗ = a,

2. (ab)∗ = b∗a∗,

3. (λa+ b))∗ = λa∗ + b∗ for all λ ∈ C, a, b ∈ A .

This this A is a *-algebra.

Definition 28.2. A Banach algebra with an involution is a C∗-algebra if

‖a‖2 = ‖a∗a‖ ∀a ∈ A .

Example 28.1. Operators on a Hilbert space form a C∗-algebra:

‖Tx||2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 ≤ ‖T ∗T‖‖x‖2.

Example 28.2. B0(H) is a C∗-algebra (without identity, unless dimH <∞).

Example 28.3. If X is compact and Hausdorff, then CC(X) is a C∗-algebra with f∗ := f .

Henceforth, we will only deal with unital C∗-algebras.

Proposition 28.1. Let A be a C∗-algebra. Then for all a ∈ A , ‖a∗‖ = ‖a‖. If A is
unital, then 1∗ = 1 and ‖1‖ = 1.

Proof. We have ‖a‖2 = ‖a∗‖‖a‖ ≤ ‖a∗‖‖a‖, which gives ‖a‖ ≤ ‖a∗‖. Switching a and a∗,
we get the other inequality.

Suppose a ∈ A . Then 1∗a = (a∗1)∗ = (a∗)∗ = a (and same for right multiplication), so
1∗ = 1. This gives ‖1‖2 = ‖1∗1‖ = ‖1‖, so ‖1‖ = 0 or 1. But this is a norm, so ‖1‖ = 1.

28.2 Self-adjoint, normal, and unitary elements

Definition 28.3. a ∈ A is

• self-adjoint if a = a∗,

• normal if aa∗ = a∗a

• unitary if a∗ = a−1.

Proposition 28.2. Let a ∈ A .
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1. If a is invertible, then a∗ is invertible, and (a∗)−1 = (a−1)∗.

2. a = x+ iy, where x, y are self-adjoint.

3. If u is unitary, ‖u‖ = 1.

4. If a is normal, its spectral radius is r(a) = ‖a‖.

Proof. 1. We have a∗(a−1)∗ = (a−1a)∗ = 1∗ = 1.

2. Let x = a+a∗

2 and y = a−a∗
2i .

3. ‖u‖2 = ‖u∗u‖ = 1.

4. We know that r(a) = limn ‖an‖1/n. In particular, we can take a subsequence with
powers of 2. We have

‖a2k‖2−k
= ‖a2k−1

a2k−1‖2−k
= ‖a2k−1‖2−(k−1)

= · · · = ‖a‖.

So limk ‖a2k‖2−k
= ‖a‖.

Proposition 28.3. Let h : A → C be a nonzero homomorphism. Then

1. If a = a∗, then h(a) ∈ R. In particular, if A is abelian, σ(a) ⊆ R.

2. h(a∗) = h(a).

3. h(a∗a) ≥ 0.

4. If u is unitary, then |h(u)| = 1.

Proof. 1. We know ‖h‖A∗ ≤ 1. Let t ∈ R, and consider h(a+ it). We have

|h(a) + it|2 = |h(a+ it)|2

≤ ‖a+ it‖2

= (a+ it)∗(a+ it)

= ‖(a− it)(a+ it)

= ‖a2 + t2‖
≤ ‖a2‖+ t2.

If h(a) = x + iy, then we get x2 + (y + t)2 ≤ ‖a‖2 + t2 for all t. This gives us
x2 + y2 + 2yt ≤ ‖a‖2 for all t. So we get y = 0.

2. If a = a+ iy, where x, y are self-adjoint, then a∗ = x− iy. Now apply h.

3. h(a∗a) = h(a∗)h ∗ (a) = |h(a)|2.

4. We have 1 = uu∗. Now apply h.
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28.3 The Gelfand Transform and functional calculus for normal elements

The extra structure here makes it clear why the spectral theorem is true.

Theorem 28.1. If A is an abelian C∗-algebra, then the Gelfand transform A → C(Σ) is
an isometric *-isomorphism,

Proof. It preserves the involution because

â∗(h) = h(a∗) = h(a) = â(h).

If a ∈ A , then a is normal, so ‖â‖sup = r(a) = ‖a‖; so the transform is isometric.
To check that this is surjective, by the Stone-Weierstrass theorem, we need only check

that Â separates points. If h1 6= h2, then let a ∈ A be such that h1(a) 6= h2(a). Then
â(h1) 6= â(h2).

This gives us a full functional calculus: if A is any abelian C∗-subalgebra of B(H),
then there exists an isometric *-algebra isomorphism C(Σ) → A , namely the inverse of
the Gelfand transform. If N ∈ B(H) is normal, then C∗(N) := {p(N,N∗) : p ∈ C[z, z]} is
an abelian C∗-algebra which contains N . So normal operators are precisely the ones that
have a functional calculus like this.

Proposition 28.4. In this example, ΣC∗(N) is homeomorphic to σ(N) ⊆ C under the

homeomorphism N̂ : ΣC∗(N) → C.

Proof. We know that N̂(Σ) = {h(N) : h ∈ Σ} = σ(N). We need to check that if N̂(h1) =
N̂(h2), then h1 = h2. We have h1(N) = h2(N), so

h1(N∗) = h1(N) = h2(N)h2(N∗).

So h1, h2 agree on any polynomial in N,N∗, which means h1 = h2.

Let Φ : C(σ(N)) → C∗(N) be our functional calculus. For any f ∈ C(σ(N)) and
x, y ∈ H, consider

〈Φ(f)x, y〉 =

∫
σ(N)

f dµx,y

for some complex-valued Borel measure µx,y. The right hand side is defined for all bounded
Borel functions f on σ(N). Use this to define Φ(f) for some functions. This extends Φ to a
functional calculus from all bounded, Borel functions on σ(N) to B(H). To get a spectral
measure of N , use Φ(1A) for all Borel A ⊆ σ(N).

Remark 28.1. We can look at abelian algebras generated by multiple commuting opera-
tors. There is a form of the spectral theorem in that setting, too.
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